Query Provenance Analysis: Efficient and Robust Defense against Query-based Black-box Attacks
- URL: http://arxiv.org/abs/2405.20641v2
- Date: Wed, 16 Oct 2024 11:08:34 GMT
- Title: Query Provenance Analysis: Efficient and Robust Defense against Query-based Black-box Attacks
- Authors: Shaofei Li, Ziqi Zhang, Haomin Jia, Ding Li, Yao Guo, Xiangqun Chen,
- Abstract summary: We propose a novel approach, Query Provenance Analysis (QPA), for more robust and efficient Stateful Defense Models (SDMs)
QPA encapsulates the historical relationships among queries as the sequence feature to capture the fundamental difference between benign and adversarial query sequences.
We evaluate QPA compared with two baselines, BlackLight and PIHA, on four widely used datasets with six query-based black-box attack algorithms.
- Score: 11.32992178606254
- License:
- Abstract: Query-based black-box attacks have emerged as a significant threat to machine learning systems, where adversaries can manipulate the input queries to generate adversarial examples that can cause misclassification of the model. To counter these attacks, researchers have proposed Stateful Defense Models (SDMs) for detecting adversarial query sequences and rejecting queries that are "similar" to the history queries. Existing state-of-the-art (SOTA) SDMs (e.g., BlackLight and PIHA) have shown great effectiveness in defending against these attacks. However, recent studies have shown that they are vulnerable to Oracle-guided Adaptive Rejection Sampling (OARS) attacks, which is a stronger adaptive attack strategy. It can be easily integrated with existing attack algorithms to evade the SDMs by generating queries with fine-tuned direction and step size of perturbations utilizing the leaked decision information from the SDMs. In this paper, we propose a novel approach, Query Provenance Analysis (QPA), for more robust and efficient SDMs. QPA encapsulates the historical relationships among queries as the sequence feature to capture the fundamental difference between benign and adversarial query sequences. To utilize the query provenance, we propose an efficient query provenance analysis algorithm with dynamic management. We evaluate QPA compared with two baselines, BlackLight and PIHA, on four widely used datasets with six query-based black-box attack algorithms. The results show that QPA outperforms the baselines in terms of defense effectiveness and efficiency on both non-adaptive and adaptive attacks. Specifically, QPA reduces the Attack Success Rate (ASR) of OARS to 4.08%, comparing to 77.63% and 87.72% for BlackLight and PIHA, respectively. Moreover, QPA also achieves 7.67x and 2.25x higher throughput than BlackLight and PIHA.
Related papers
- Rag and Roll: An End-to-End Evaluation of Indirect Prompt Manipulations in LLM-based Application Frameworks [12.061098193438022]
Retrieval Augmented Generation (RAG) is a technique commonly used to equip models with out of distribution knowledge.
This paper investigates the security of RAG systems against end-to-end indirect prompt manipulations.
arXiv Detail & Related papers (2024-08-09T12:26:05Z) - AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
Adversarial Contrastive Prompt Tuning (ACPT) is proposed to fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries.
We show that ACPT can detect 7 state-of-the-art query-based attacks with $>99%$ detection rate within 5 shots.
We also show that ACPT is robust to 3 types of adaptive attacks.
arXiv Detail & Related papers (2024-08-04T09:53:50Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - BruSLeAttack: A Query-Efficient Score-Based Black-Box Sparse Adversarial Attack [22.408968332454062]
We study the unique, less-well understood problem of generating sparse adversarial samples simply by observing the score-based replies to model queries.
We develop the BruSLeAttack-a new, faster (more query-efficient) algorithm for the problem.
Our work facilitates faster evaluation of model vulnerabilities and raises our vigilance on the safety, security and reliability of deployed systems.
arXiv Detail & Related papers (2024-04-08T08:59:26Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
Adversarial attacks can introduce subtle perturbations to input data.
Recent attack methods can achieve a relatively high attack success rate (ASR)
We propose a Distribution-Aware LoRA-based Adversarial Attack (DALA) method.
arXiv Detail & Related papers (2023-11-14T23:43:47Z) - Geometrically Adaptive Dictionary Attack on Face Recognition [23.712389625037442]
We propose a strategy for query-efficient black-box attacks on face recognition.
Our core idea is to create an adversarial perturbation in the UV texture map and project it onto the face in the image.
We show overwhelming performance improvement in the experiments on the LFW and CPLFW datasets.
arXiv Detail & Related papers (2021-11-08T10:26:28Z) - A Strong Baseline for Query Efficient Attacks in a Black Box Setting [3.52359746858894]
We propose a query efficient attack strategy to generate plausible adversarial examples on text classification and entailment tasks.
Our attack jointly leverages attention mechanism and locality sensitive hashing (LSH) to reduce the query count.
arXiv Detail & Related papers (2021-09-10T10:46:32Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
We propose a Neural Process based black-box adversarial attack (NP-Attack)
NP-Attack could greatly decrease the query counts under the black-box setting.
arXiv Detail & Related papers (2020-09-24T06:22:56Z) - AdvMind: Inferring Adversary Intent of Black-Box Attacks [66.19339307119232]
We present AdvMind, a new class of estimation models that infer the adversary intent of black-box adversarial attacks in a robust manner.
On average AdvMind detects the adversary intent with over 75% accuracy after observing less than 3 query batches.
arXiv Detail & Related papers (2020-06-16T22:04:31Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.