Neural Gaussian Scale-Space Fields
- URL: http://arxiv.org/abs/2405.20980v1
- Date: Fri, 31 May 2024 16:26:08 GMT
- Title: Neural Gaussian Scale-Space Fields
- Authors: Felix Mujkanovic, Ntumba Elie Nsampi, Christian Theobalt, Hans-Peter Seidel, Thomas Leimkühler,
- Abstract summary: We present an efficient method to learn the continuous, anisotropic Gaussian scale space of an arbitrary signal.
Our approach is trained self-supervised, i.e., training does not require any manual filtering.
Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities.
- Score: 60.668800252986976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.
Related papers
- Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
We propose a unified optimization method to make Gaussians adaptive for arbitrary scales.
Inspired by the mipmap technique, we design pseudo ground-truth for the target scale and propose a scale-consistency guidance loss to inject scale information into 3D Gaussians.
Our method outperforms 3DGS in PSNR by an average of 9.25 dB for zoom-in and 10.40 dB for zoom-out.
arXiv Detail & Related papers (2024-08-12T16:49:22Z) - Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
We present a novel way to design neural fields such that points can be queried with an adaptive Gaussian PSF.
With its theoretically guaranteed anti-aliasing, our method sets a new state of the art for arbitrary-scale single image super-resolution.
arXiv Detail & Related papers (2023-11-29T14:01:28Z) - Adaptive Shells for Efficient Neural Radiance Field Rendering [92.18962730460842]
We propose a neural radiance formulation that smoothly transitions between- and surface-based rendering.
Our approach enables efficient rendering at very high fidelity.
We also demonstrate that the extracted envelope enables downstream applications such as animation and simulation.
arXiv Detail & Related papers (2023-11-16T18:58:55Z) - Combinatorial optimization for low bit-width neural networks [23.466606660363016]
Low-bit width neural networks have been extensively explored for deployment on edge devices to reduce computational resources.
Existing approaches have focused on gradient-based optimization in a two-stage train-and-compress setting.
We show that a combination of greedy coordinate descent and this novel approach can attain competitive accuracy on binary classification tasks.
arXiv Detail & Related papers (2022-06-04T15:02:36Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
Implicit neural representations are a promising new avenue of representing general signals.
Current approach is difficult to scale for a large number of signals or a data set.
We show that meta-learned sparse neural representations achieve a much smaller loss than dense meta-learned models.
arXiv Detail & Related papers (2021-10-27T18:02:53Z) - Semi-Sparsity for Smoothing Filters [1.1404527665142667]
We show a new semi-sparsity smoothing algorithm based on a novel sparsity-inducing framework.
We show many benefits to a series of signal/image processing and computer vision applications.
arXiv Detail & Related papers (2021-07-01T17:31:42Z) - Mat\'ern Gaussian Processes on Graphs [67.13902825728718]
We leverage the partial differential equation characterization of Mat'ern Gaussian processes to study their analog for undirected graphs.
We show that the resulting Gaussian processes inherit various attractive properties of their Euclidean and Euclidian analogs.
This enables graph Mat'ern Gaussian processes to be employed in mini-batch and non-conjugate settings.
arXiv Detail & Related papers (2020-10-29T13:08:07Z) - Delving Deeper into Anti-aliasing in ConvNets [42.82751522973616]
Aliasing refers to the phenomenon that high frequency signals degenerate into completely different ones after sampling.
We propose an adaptive content-aware low-pass filtering layer, which predicts separate filter weights for each spatial location and channel group.
arXiv Detail & Related papers (2020-08-21T17:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.