From Seedling to Harvest: The GrowingSoy Dataset for Weed Detection in Soy Crops via Instance Segmentation
- URL: http://arxiv.org/abs/2406.00313v2
- Date: Wed, 5 Jun 2024 03:22:49 GMT
- Title: From Seedling to Harvest: The GrowingSoy Dataset for Weed Detection in Soy Crops via Instance Segmentation
- Authors: Raul Steinmetz, Victor A. Kich, Henrique Krever, Joao D. Rigo Mazzarolo, Ricardo B. Grando, Vinicius Marini, Celio Trois, Ard Nieuwenhuizen,
- Abstract summary: We introduce a comprehensive dataset for training neural networks to detect weeds and soy plants through instance segmentation.
Our dataset covers various stages of soy growth, offering a chronological perspective on weed invasion's impact.
We also provide 6 state of the art models, trained in this dataset, that can understand and detect soy and weed in every stage of the plantation process.
- Score: 0.2605569739850177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning, particularly Convolutional Neural Networks (CNNs), has gained significant attention for its effectiveness in computer vision, especially in agricultural tasks. Recent advancements in instance segmentation have improved image classification accuracy. In this work, we introduce a comprehensive dataset for training neural networks to detect weeds and soy plants through instance segmentation. Our dataset covers various stages of soy growth, offering a chronological perspective on weed invasion's impact, with 1,000 meticulously annotated images. We also provide 6 state of the art models, trained in this dataset, that can understand and detect soy and weed in every stage of the plantation process. By using this dataset for weed and soy segmentation, we achieved a segmentation average precision of 79.1% and an average recall of 69.2% across all plant classes, with the YOLOv8X model. Moreover, the YOLOv8M model attained 78.7% mean average precision (mAp-50) in caruru weed segmentation, 69.7% in grassy weed segmentation, and 90.1% in soy plant segmentation.
Related papers
- A New Dataset and Comparative Study for Aphid Cluster Detection and Segmentation in Sorghum Fields [9.735484847744416]
Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum fields.
Farmers often employ the inefficient use of harmful chemical pesticides that have negative health and environmental impacts.
We have developed a large multi-scale dataset for aphid cluster detection and segmentation.
arXiv Detail & Related papers (2024-05-07T13:27:58Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Transferring learned patterns from ground-based field imagery to predict
UAV-based imagery for crop and weed semantic segmentation in precision crop
farming [3.95486899327898]
We have developed a deep convolutional network that enables to predict both field and aerial images from UAVs for weed segmentation.
The network learning process is visualized by feature maps at shallow and deep layers.
The study shows that the developed deep convolutional neural network could be used to classify weeds from both field and aerial images.
arXiv Detail & Related papers (2022-10-20T19:25:06Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - GrowliFlower: An image time series dataset for GROWth analysis of
cauLIFLOWER [2.8247971782279615]
This article presents GrowliFlower, an image-based UAV time series dataset of two monitored cauliflower fields of size 0.39 and 0.60 ha acquired in 2020 and 2021.
The dataset contains RGB and multispectral orthophotos from which about 14,000 individual plant coordinates are derived and provided.
The dataset contains collected phenotypic traits of 740 plants, including the developmental stage as well as plant and cauliflower size.
arXiv Detail & Related papers (2022-04-01T08:56:59Z) - Using depth information and colour space variations for improving
outdoor robustness for instance segmentation of cabbage [62.997667081978825]
This research focuses on improving instance segmentation of field crops under varying environmental conditions.
The influence of depth information and different colour space representations were analysed.
Results showed that depth combined with colour information leads to a segmentation accuracy increase of 7.1%.
arXiv Detail & Related papers (2021-03-31T09:19:12Z) - Extracting Pasture Phenotype and Biomass Percentages using Weakly
Supervised Multi-target Deep Learning on a Small Dataset [10.007844164505157]
Dairy industry uses clover and grass as fodder for cows.
estimation of grass and clover biomass yield enables smart decisions.
Applying data augmentation and transfer learning is effective in predicting multi-target biomass percentages of different plant species.
arXiv Detail & Related papers (2021-01-08T19:41:46Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
This work presents the first large-scale pollen grain image dataset, including more than 13 thousands objects.
The paper focuses on the employed data acquisition steps, which include aerobiological sampling, microscope image acquisition, object detection, segmentation and labelling.
arXiv Detail & Related papers (2020-07-09T10:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.