Posterior Label Smoothing for Node Classification
- URL: http://arxiv.org/abs/2406.00410v1
- Date: Sat, 1 Jun 2024 11:59:49 GMT
- Title: Posterior Label Smoothing for Node Classification
- Authors: Jaeseung Heo, Moonjeong Park, Dongwoo Kim,
- Abstract summary: We propose a simple yet effective label smoothing for the transductive node classification task.
We design the soft label to encapsulate the local context of the target node through the neighborhood label distribution.
In the following analysis, we find that incorporating global label statistics in posterior computation is the key to the success of label smoothing.
- Score: 2.737276507021477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Soft labels can improve the generalization of a neural network classifier in many domains, such as image classification. Despite its success, the current literature has overlooked the efficiency of label smoothing in node classification with graph-structured data. In this work, we propose a simple yet effective label smoothing for the transductive node classification task. We design the soft label to encapsulate the local context of the target node through the neighborhood label distribution. We apply the smoothing method for seven baseline models to show its effectiveness. The label smoothing methods improve the classification accuracy in 10 node classification datasets in most cases. In the following analysis, we find that incorporating global label statistics in posterior computation is the key to the success of label smoothing. Further investigation reveals that the soft labels mitigate overfitting during training, leading to better generalization performance.
Related papers
- Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning [0.0]
This study explores label propagation in semi-supervised learning.
We employ a transductive label propagation method based on the manifold assumption for text classification.
By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning.
arXiv Detail & Related papers (2024-10-15T07:25:33Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Binary Classification with Positive Labeling Sources [71.37692084951355]
We propose WEAPO, a simple yet competitive WS method for producing training labels without negative labeling sources.
We show WEAPO achieves the highest averaged performance on 10 benchmark datasets.
arXiv Detail & Related papers (2022-08-02T19:32:08Z) - Label-Enhanced Graph Neural Network for Semi-supervised Node
Classification [32.64730237473914]
We present a label-enhanced learning framework for Graph Neural Networks (GNNs)
It first models each label as a virtual center for intra-class nodes and then jointly learns the representations of both nodes and labels.
Our approach could not only smooth the representations of nodes belonging to the same class, but also explicitly encode the label semantics into the learning process of GNNs.
arXiv Detail & Related papers (2022-05-31T09:48:47Z) - Structure-Aware Label Smoothing for Graph Neural Networks [39.97741949184259]
Representing a label distribution as a one-hot vector is a common practice in training node classification models.
We propose a novel SALS (textitStructure-Aware Label Smoothing) method as an enhancement component to popular node classification models.
arXiv Detail & Related papers (2021-12-01T13:48:58Z) - Adaptive Label Smoothing To Regularize Large-Scale Graph Training [46.00927775402987]
We propose the adaptive label smoothing (ALS) method to replace the one-hot hard labels with smoothed ones.
ALS propagates node labels to aggregate the neighborhood label distribution in a pre-processing step, and then updates the optimal smoothed labels online to adapt to specific graph structure.
arXiv Detail & Related papers (2021-08-30T23:51:31Z) - Rethinking Pseudo Labels for Semi-Supervised Object Detection [84.697097472401]
We introduce certainty-aware pseudo labels tailored for object detection.
We dynamically adjust the thresholds used to generate pseudo labels and reweight loss functions for each category to alleviate the class imbalance problem.
Our approach improves supervised baselines by up to 10% AP using only 1-10% labeled data from COCO.
arXiv Detail & Related papers (2021-06-01T01:32:03Z) - Weakly Supervised Pseudo-Label assisted Learning for ALS Point Cloud
Semantic Segmentation [1.4620086904601473]
Competitive point cloud results usually rely on a large amount of labeled data.
In this study, we propose a pseudo-labeling strategy to obtain accurate results with limited ground truth.
arXiv Detail & Related papers (2021-05-05T08:07:21Z) - Unsupervised Label Refinement Improves Dataless Text Classification [48.031421660674745]
Dataless text classification is capable of classifying documents into previously unseen labels by assigning a score to any document paired with a label description.
While promising, it crucially relies on accurate descriptions of the label set for each downstream task.
This reliance causes dataless classifiers to be highly sensitive to the choice of label descriptions and hinders the broader application of dataless classification in practice.
arXiv Detail & Related papers (2020-12-08T03:37:50Z) - Delving Deep into Label Smoothing [112.24527926373084]
Label smoothing is an effective regularization tool for deep neural networks (DNNs)
We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category.
arXiv Detail & Related papers (2020-11-25T08:03:11Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.