Guiding and Diversifying LLM-Based Story Generation via Answer Set Programming
- URL: http://arxiv.org/abs/2406.00554v2
- Date: Fri, 19 Jul 2024 22:50:46 GMT
- Title: Guiding and Diversifying LLM-Based Story Generation via Answer Set Programming
- Authors: Phoebe J. Wang, Max Kreminski,
- Abstract summary: Large language models (LLMs) are capable of generating stories in response to open-ended user requests.
We propose using a higher-level and more abstract symbolic specification of high-level story structure to guide and diversify story generation.
- Score: 1.7889842797216124
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Instruction-tuned large language models (LLMs) are capable of generating stories in response to open-ended user requests, but the resulting stories tend to be limited in their diversity. Older, symbolic approaches to story generation (such as planning) can generate substantially more diverse plot outlines, but are limited to producing stories that recombine a fixed set of hand-engineered character action templates. Can we combine the strengths of these approaches while mitigating their weaknesses? We propose to do so by using a higher-level and more abstract symbolic specification of high-level story structure -- implemented via answer set programming (ASP) -- to guide and diversify LLM-based story generation. Via semantic similarity analysis, we demonstrate that our approach produces more diverse stories than an unguided LLM, and via code excerpts, we demonstrate the improved compactness and flexibility of ASP-based outline generation over full-fledged narrative planning.
Related papers
- SEED-Story: Multimodal Long Story Generation with Large Language Model [66.37077224696242]
SEED-Story is a novel method that leverages a Multimodal Large Language Model (MLLM) to generate extended multimodal stories.
We propose multimodal attention sink mechanism to enable the generation of stories with up to 25 sequences (only 10 for training) in a highly efficient autoregressive manner.
We present a large-scale and high-resolution dataset named StoryStream for training our model and quantitatively evaluating the task of multimodal story generation in various aspects.
arXiv Detail & Related papers (2024-07-11T17:21:03Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Improving Visual Storytelling with Multimodal Large Language Models [1.325953054381901]
This paper presents a novel approach leveraging large language models (LLMs) and large vision-language models (LVLMs)
We introduce a new dataset comprising diverse visual stories, annotated with detailed captions and multimodal elements.
Our method employs a combination of supervised and reinforcement learning to fine-tune the model, enhancing its narrative generation capabilities.
arXiv Detail & Related papers (2024-07-02T18:13:55Z) - Retrieve-Plan-Generation: An Iterative Planning and Answering Framework for Knowledge-Intensive LLM Generation [47.22520829950929]
We propose the Retrieve-Plan-Generation (RPG) framework for large language models (LLMs)
RPG generates plan tokens to guide subsequent generation in the plan stage.
In the answer stage, the model selects relevant fine-grained paragraphs based on the plan and uses them for further answer generation.
arXiv Detail & Related papers (2024-06-21T08:45:52Z) - MoPS: Modular Story Premise Synthesis for Open-Ended Automatic Story Generation [50.01780173691132]
We introduce Modular Story Premise Synthesis (MoPS)
MoPS breaks down story premises into modules like background and persona for automated design and generation.
Thorough evaluations demonstrate that our synthesized premises excel in diversity, fascination, completeness, and originality.
arXiv Detail & Related papers (2024-06-09T08:31:14Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
This paper introduces Structure Guided Prompt, a framework designed to improve the multi-step reasoning capabilities of Large Language Models (LLMs)
Our experiments show that this framework significantly enhances the reasoning capabilities of LLMs, enabling them to excel in a broader spectrum of natural language scenarios.
arXiv Detail & Related papers (2024-02-20T22:56:23Z) - GROVE: A Retrieval-augmented Complex Story Generation Framework with A
Forest of Evidence [26.90143556633735]
We propose a retrieval-autextbfGmented stotextbfRy generation framework with a ftextbfOrest of etextbfVidtextbfEnce (GROVE) to enhance stories' complexity.
We design an asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story.
arXiv Detail & Related papers (2023-10-09T03:55:55Z) - Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion
Models [70.86603627188519]
We focus on a novel, yet challenging task of generating a coherent image sequence based on a given storyline, denoted as open-ended visual storytelling.
We propose a learning-based auto-regressive image generation model, termed as StoryGen, with a novel vision-language context module.
We show StoryGen can generalize to unseen characters without any optimization, and generate image sequences with coherent content and consistent character.
arXiv Detail & Related papers (2023-06-01T17:58:50Z) - Plot Writing From Pre-Trained Language Models [3.592350589927261]
Pre-trained language models (PLMs) fail to generate long-form narrative text because they do not consider global structure.
Recent work in story generation reintroduced explicit content planning in the form of prompts, keywords, or semantic frames.
We propose generating story plots using off-the-shelf PLMs while maintaining the benefit of content planning to generate cohesive and contentful stories.
arXiv Detail & Related papers (2022-06-07T05:30:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.