Auditing for Racial Discrimination in the Delivery of Education Ads
- URL: http://arxiv.org/abs/2406.00591v2
- Date: Thu, 18 Jul 2024 19:12:25 GMT
- Title: Auditing for Racial Discrimination in the Delivery of Education Ads
- Authors: Basileal Imana, Aleksandra Korolova, John Heidemann,
- Abstract summary: We propose a new third-party auditing method that can evaluate racial bias in the delivery of ads for education opportunities.
We find evidence of racial discrimination in Meta's algorithmic delivery of ads for education opportunities, posing legal and ethical concerns.
- Score: 50.37313459134418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital ads on social-media platforms play an important role in shaping access to economic opportunities. Our work proposes and implements a new third-party auditing method that can evaluate racial bias in the delivery of ads for education opportunities. Third-party auditing is important because it allows external parties to demonstrate presence or absence of bias in social-media algorithms. Education is a domain with legal protections against discrimination and concerns of racial-targeting, but bias induced by ad delivery algorithms has not been previously explored in this domain. Prior audits demonstrated discrimination in platforms' delivery of ads to users for housing and employment ads. These audit findings supported legal action that prompted Meta to change their ad-delivery algorithms to reduce bias, but only in the domains of housing, employment, and credit. In this work, we propose a new methodology that allows us to measure racial discrimination in a platform's ad delivery algorithms for education ads. We apply our method to Meta using ads for real schools and observe the results of delivery. We find evidence of racial discrimination in Meta's algorithmic delivery of ads for education opportunities, posing legal and ethical concerns. Our results extend evidence of algorithmic discrimination to the education domain, showing that current bias mitigation mechanisms are narrow in scope, and suggesting a broader role for third-party auditing of social media in areas where ensuring non-discrimination is important.
Related papers
- Auditing for Bias in Ad Delivery Using Inferred Demographic Attributes [50.37313459134418]
We study the effects of inference error on auditing for bias in one prominent application: black-box audit of ad delivery using paired ads.
We propose a way to mitigate the inference error when evaluating skew in ad delivery algorithms.
arXiv Detail & Related papers (2024-10-30T18:57:03Z) - On the Use of Proxies in Political Ad Targeting [49.61009579554272]
We show that major political advertisers circumvented mitigations by targeting proxy attributes.
Our findings have crucial implications for the ongoing discussion on the regulation of political advertising.
arXiv Detail & Related papers (2024-10-18T17:15:13Z) - Unlawful Proxy Discrimination: A Framework for Challenging Inherently Discriminatory Algorithms [4.1221687771754]
EU legal concept of direct discrimination may apply to various algorithmic decision-making contexts.
Unlike indirect discrimination, there is generally no 'objective justification' stage in the direct discrimination framework.
We focus on the most likely candidate for direct discrimination in the algorithmic context.
arXiv Detail & Related papers (2024-04-22T10:06:17Z) - Discrimination through Image Selection by Job Advertisers on Facebook [79.21648699199648]
We propose and investigate the prevalence of a new means for discrimination in job advertising.
It combines both targeting and delivery -- through the disproportionate representation or exclusion of people of certain demographics in job ad images.
We use the Facebook Ad Library to demonstrate the prevalence of this practice.
arXiv Detail & Related papers (2023-06-13T03:43:58Z) - Having your Privacy Cake and Eating it Too: Platform-supported Auditing
of Social Media Algorithms for Public Interest [70.02478301291264]
Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse.
Prior studies have used black-box methods to show that these algorithms can lead to biased or discriminatory outcomes.
We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation.
arXiv Detail & Related papers (2022-07-18T17:32:35Z) - Auditing for Discrimination in Algorithms Delivering Job Ads [70.02478301291264]
We develop a new methodology for black-box auditing of algorithms for discrimination in the delivery of job advertisements.
Our first contribution is to identify the distinction between skew in ad delivery due to protected categories such as gender or race.
Second, we develop an auditing methodology that distinguishes between skew explainable by differences in qualifications from other factors.
Third, we apply our proposed methodology to two prominent targeted advertising platforms for job ads: Facebook and LinkedIn.
arXiv Detail & Related papers (2021-04-09T17:38:36Z) - Auditing Digital Platforms for Discrimination in Economic Opportunity
Advertising [5.794035436345331]
We present a methodology and software to audit digital platforms for bias and discrimination.
An audit of the Facebook platform and advertising network was conducted.
For each of the categories, we analyzed the distribution of the ad content by age group and gender.
arXiv Detail & Related papers (2020-08-21T19:18:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.