Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for Zero-Shot Semantic Segmentation
- URL: http://arxiv.org/abs/2406.00670v2
- Date: Thu, 6 Jun 2024 13:46:15 GMT
- Title: Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for Zero-Shot Semantic Segmentation
- Authors: Yunheng Li, ZhongYu Li, Quansheng Zeng, Qibin Hou, Ming-Ming Cheng,
- Abstract summary: We introduce a novel framework named Cascade-CLIP for zero-shot semantic segmentation.
Our framework achieves superior zero-shot performance on segmentation benchmarks like COCO-Stuff, Pascal-VOC, and Pascal-Context.
- Score: 72.47110803885235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained vision-language models, e.g., CLIP, have been successfully applied to zero-shot semantic segmentation. Existing CLIP-based approaches primarily utilize visual features from the last layer to align with text embeddings, while they neglect the crucial information in intermediate layers that contain rich object details. However, we find that directly aggregating the multi-level visual features weakens the zero-shot ability for novel classes. The large differences between the visual features from different layers make these features hard to align well with the text embeddings. We resolve this problem by introducing a series of independent decoders to align the multi-level visual features with the text embeddings in a cascaded way, forming a novel but simple framework named Cascade-CLIP. Our Cascade-CLIP is flexible and can be easily applied to existing zero-shot semantic segmentation methods. Experimental results show that our simple Cascade-CLIP achieves superior zero-shot performance on segmentation benchmarks, like COCO-Stuff, Pascal-VOC, and Pascal-Context. Our code is available at: https://github.com/HVision-NKU/Cascade-CLIP
Related papers
- Self-Calibrated CLIP for Training-Free Open-Vocabulary Segmentation [19.749490092520006]
Self-Calibrated CLIP (SC-CLIP) is a training-free method that calibrates CLIP to produce finer-language representations.
SC-CLIP boosts the performance of vanilla CLIP ViT-L/14 by 6.8 times.
arXiv Detail & Related papers (2024-11-24T15:14:05Z) - Frozen CLIP: A Strong Backbone for Weakly Supervised Semantic Segmentation [90.35249276717038]
We propose WeCLIP, a CLIP-based single-stage pipeline, for weakly supervised semantic segmentation.
Specifically, the frozen CLIP model is applied as the backbone for semantic feature extraction.
A new decoder is designed to interpret extracted semantic features for final prediction.
arXiv Detail & Related papers (2024-06-17T03:49:47Z) - TagCLIP: Improving Discrimination Ability of Open-Vocabulary Semantic Segmentation [53.974228542090046]
Contrastive Language-Image Pre-training (CLIP) has recently shown great promise in pixel-level zero-shot learning tasks.
Existing approaches utilizing CLIP's text and patch embeddings to generate semantic masks often misidentify input pixels from unseen classes.
We propose TagCLIP (Trusty-aware guided CLIP) to address this issue.
arXiv Detail & Related papers (2023-04-15T12:52:23Z) - [CLS] Token is All You Need for Zero-Shot Semantic Segmentation [60.06653755695356]
We propose an embarrassingly simple yet highly effective zero-shot semantic segmentation (ZS3) method, based on the pre-trained vision-language model CLIP.
Specifically, we use the [text] token output from the text branch, as an auxiliary semantic prompt, to replace the navigation [text] token in shallow layers of the ViT-based visual encoder.
Our proposed ZS3 method achieves a SOTA performance, and it is even comparable with those few-shot semantic segmentation methods.
arXiv Detail & Related papers (2023-04-13T01:35:07Z) - CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly
Supervised Semantic Segmentation [19.208559353954833]
This paper explores the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels.
To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES.
arXiv Detail & Related papers (2022-12-16T06:23:59Z) - Open Vocabulary Semantic Segmentation with Patch Aligned Contrastive
Learning [82.70453633641466]
We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss.
We show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy.
arXiv Detail & Related papers (2022-12-09T17:23:00Z) - ZegCLIP: Towards Adapting CLIP for Zero-shot Semantic Segmentation [35.60888272729273]
Recently, CLIP has been applied to pixel-level zero-shot learning tasks via a two-stage scheme.
While effective, such a scheme requires two image encoders, one for proposal generation and one for CLIP, leading to a complicated pipeline and high computational cost.
We propose a simpler-and-efficient one-stage solution that directly extends CLIP's zero-shot prediction capability from image to pixel level.
arXiv Detail & Related papers (2022-12-07T12:05:00Z) - SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary
Semantic Segmentation [26.079055078561986]
We propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation.
The main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs.
Experimental results show that our model achieves comparable or superior segmentation accuracy.
arXiv Detail & Related papers (2022-11-27T12:38:52Z) - DenseCLIP: Extract Free Dense Labels from CLIP [130.3830819077699]
Contrastive Language-Image Pre-training (CLIP) has made a remarkable breakthrough in open-vocabulary zero-shot image recognition.
DenseCLIP+ surpasses SOTA transductive zero-shot semantic segmentation methods by large margins.
Our finding suggests that DenseCLIP can serve as a new reliable source of supervision for dense prediction tasks.
arXiv Detail & Related papers (2021-12-02T09:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.