Lay-A-Scene: Personalized 3D Object Arrangement Using Text-to-Image Priors
- URL: http://arxiv.org/abs/2406.00687v2
- Date: Tue, 4 Jun 2024 16:19:47 GMT
- Title: Lay-A-Scene: Personalized 3D Object Arrangement Using Text-to-Image Priors
- Authors: Ohad Rahamim, Hilit Segev, Idan Achituve, Yuval Atzmon, Yoni Kasten, Gal Chechik,
- Abstract summary: Current 3D generation techniques struggle with generating scenes with multiple high-resolution objects.
Here we introduce Lay-A-Scene, which solves the task of Open-set 3D Object Arrangement.
We show how to infer the 3D poses and arrangement of objects from a 2D generated image by finding a consistent projection of objects onto the 2D scene.
- Score: 43.19801974707858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating 3D visual scenes is at the forefront of visual generative AI, but current 3D generation techniques struggle with generating scenes with multiple high-resolution objects. Here we introduce Lay-A-Scene, which solves the task of Open-set 3D Object Arrangement, effectively arranging unseen objects. Given a set of 3D objects, the task is to find a plausible arrangement of these objects in a scene. We address this task by leveraging pre-trained text-to-image models. We personalize the model and explain how to generate images of a scene that contains multiple predefined objects without neglecting any of them. Then, we describe how to infer the 3D poses and arrangement of objects from a 2D generated image by finding a consistent projection of objects onto the 2D scene. We evaluate the quality of Lay-A-Scene using 3D objects from Objaverse and human raters and find that it often generates coherent and feasible 3D object arrangements.
Related papers
- Disentangled 3D Scene Generation with Layout Learning [109.03233745767062]
We introduce a method to generate 3D scenes that are disentangled into their component objects.
Our key insight is that objects can be discovered by finding parts of a 3D scene that, when rearranged spatially, still produce valid configurations of the same scene.
We show that despite its simplicity, our approach successfully generates 3D scenes into individual objects.
arXiv Detail & Related papers (2024-02-26T18:54:15Z) - InseRF: Text-Driven Generative Object Insertion in Neural 3D Scenes [86.26588382747184]
We introduce InseRF, a novel method for generative object insertion in the NeRF reconstructions of 3D scenes.
Based on a user-provided textual description and a 2D bounding box in a reference viewpoint, InseRF generates new objects in 3D scenes.
arXiv Detail & Related papers (2024-01-10T18:59:53Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets.
We introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text.
arXiv Detail & Related papers (2023-12-13T18:59:30Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - Object2Scene: Putting Objects in Context for Open-Vocabulary 3D
Detection [24.871590175483096]
Point cloud-based open-vocabulary 3D object detection aims to detect 3D categories that do not have ground-truth annotations in the training set.
Previous approaches leverage large-scale richly-annotated image datasets as a bridge between 3D and category semantics.
We propose Object2Scene, the first approach that leverages large-scale large-vocabulary 3D object datasets to augment existing 3D scene datasets for open-vocabulary 3D object detection.
arXiv Detail & Related papers (2023-09-18T03:31:53Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images.
With an external 3D scene extractor, we obtain the 3D objects and scene features for input images.
We construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes.
arXiv Detail & Related papers (2023-05-19T15:53:56Z) - Learning 3D Scene Priors with 2D Supervision [37.79852635415233]
We propose a new method to learn 3D scene priors of layout and shape without requiring any 3D ground truth.
Our method represents a 3D scene as a latent vector, from which we can progressively decode to a sequence of objects characterized by their class categories.
Experiments on 3D-FRONT and ScanNet show that our method outperforms state of the art in single-view reconstruction.
arXiv Detail & Related papers (2022-11-25T15:03:32Z) - Unsupervised object-centric video generation and decomposition in 3D [36.08064849807464]
We propose to model a video as the view seen while moving through a scene with multiple 3D objects and a 3D background.
Our model is trained from monocular videos without any supervision, yet learns to generate coherent 3D scenes containing several moving objects.
arXiv Detail & Related papers (2020-07-07T18:01:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.