Towards General Robustness Verification of MaxPool-based Convolutional Neural Networks via Tightening Linear Approximation
- URL: http://arxiv.org/abs/2406.00699v1
- Date: Sun, 2 Jun 2024 10:33:04 GMT
- Title: Towards General Robustness Verification of MaxPool-based Convolutional Neural Networks via Tightening Linear Approximation
- Authors: Yuan Xiao, Shiqing Ma, Juan Zhai, Chunrong Fang, Jinyuan Jia, Zhenyu Chen,
- Abstract summary: MaxLin is a robustness verifier for MaxPool-based CNNs with tight linear approximation.
We evaluate MaxLin with open-sourced benchmarks, including LeNet and networks trained on the MNIST, CIFAR-10, and Tiny ImageNet datasets.
- Score: 51.235583545740674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The robustness of convolutional neural networks (CNNs) is vital to modern AI-driven systems. It can be quantified by formal verification by providing a certified lower bound, within which any perturbation does not alter the original input's classification result. It is challenging due to nonlinear components, such as MaxPool. At present, many verification methods are sound but risk losing some precision to enhance efficiency and scalability, and thus, a certified lower bound is a crucial criterion for evaluating the performance of verification tools. In this paper, we present MaxLin, a robustness verifier for MaxPool-based CNNs with tight linear approximation. By tightening the linear approximation of the MaxPool function, we can certify larger certified lower bounds of CNNs. We evaluate MaxLin with open-sourced benchmarks, including LeNet and networks trained on the MNIST, CIFAR-10, and Tiny ImageNet datasets. The results show that MaxLin outperforms state-of-the-art tools with up to 110.60% improvement regarding the certified lower bound and 5.13 $\times$ speedup for the same neural networks. Our code is available at https://github.com/xiaoyuanpigo/maxlin.
Related papers
- Certifying Robustness of Convolutional Neural Networks with Tight Linear
Approximation [5.678314425261842]
Ti-Lin is a Tight Linear approximation approach for robustness verification of Conal Neural Networks.
We present a new linear constraints for S-shaped activation functions, which is better than both existing Neuron-wise Tightest and Network-wise Tightest tools.
We evaluate it with 48 different CNNs trained on MNIST, CIFAR-10, and Tiny ImageNet datasets.
arXiv Detail & Related papers (2022-11-13T08:37:13Z) - Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness [172.61581010141978]
Certifiable robustness is a desirable property for adopting deep neural networks (DNNs) in safety-critical scenarios.
We propose a novel solution to strategically manipulate neurons, by "grafting" appropriate levels of linearity.
arXiv Detail & Related papers (2022-06-15T22:42:29Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
Certified robustness is a desirable property for deep neural networks in safety-critical applications.
We show that our method consistently outperforms state-of-the-art methods on MNIST and TinyNet datasets.
arXiv Detail & Related papers (2021-11-02T06:44:10Z) - A Neural Network Approach for Online Nonlinear Neyman-Pearson
Classification [3.6144103736375857]
We propose a novel Neyman-Pearson (NP) classifier that is both online and nonlinear as the first time in the literature.
The proposed classifier operates on a binary labeled data stream in an online manner, and maximizes the detection power about a user-specified and controllable false positive rate.
Our algorithm is appropriate for large scale data applications and provides a decent false positive rate controllability with real time processing.
arXiv Detail & Related papers (2020-06-14T20:00:25Z) - Second-Order Provable Defenses against Adversarial Attacks [63.34032156196848]
We show that if the eigenvalues of the network are bounded, we can compute a certificate in the $l$ norm efficiently using convex optimization.
We achieve certified accuracy of 5.78%, and 44.96%, and 43.19% on 2,59% and 4BP-based methods respectively.
arXiv Detail & Related papers (2020-06-01T05:55:18Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.