Chiral photon blockade in the spinning Kerr resonator
- URL: http://arxiv.org/abs/2406.00745v1
- Date: Sun, 2 Jun 2024 13:52:50 GMT
- Title: Chiral photon blockade in the spinning Kerr resonator
- Authors: Yunlan Zuo, Ya-Feng Jiao, Xun-Wei Xu, Adam Miranowicz, Le-Man Kuang, Hui Jing,
- Abstract summary: We show that by driving such a device at a fixed direction, completely different quantum effects can emerge for the counter-propagating optical modes.
Our work can stimulate more efforts towards making and utilizing various chiral quantum effects, including applications for chiral quantum networks or noise-tolerant quantum sensors.
- Score: 0.4398130586098371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose how to achieve chiral photon blockade by spinning a nonlinear optical resonator. We show that by driving such a device at a fixed direction, completely different quantum effects can emerge for the counter-propagating optical modes, due to the spinning-induced breaking of time-reversal symmetry, which otherwise is unattainable for the same device in the static regime. Also, we find that in comparison with the static case, robust non-classical correlations against random backscattering losses can be achieved for such a quantum chiral system. Our work, extending previous works on the spontaneous breaking of optical chiral symmetry from the classical to purely quantum regimes, can stimulate more efforts towards making and utilizing various chiral quantum effects, including applications for chiral quantum networks or noise-tolerant quantum sensors.
Related papers
- Quantum-like nonlinear interferometry with frequency-engineered classical light [0.0]
We present a "quantum-like" nonlinear optical method that reaches super-resolution in single-photon detection regime.
This is achieved by replacing photon-pairs by coherent states of light, mimicking quantum properties through classical nonlinear optics processes.
arXiv Detail & Related papers (2024-09-18T15:22:25Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Switching classical and quantum nonreciprocities with spinning photonics [0.9419294043578184]
We show how to achieve, manipulate, and switch classical or quantum nonreciprocal effects of light with a spinning Kerr resonator.
The possibility to switch a single device between a classical isolator and a purely quantum directional system can provide more functions for nonreciprocal materials.
arXiv Detail & Related papers (2023-03-31T12:18:17Z) - Phase-controlled asymmetric optomechanical entanglement against optical
backscattering [3.615369748154691]
We propose how to achieve coherent switch of optomechanical entanglement in an optical whispering-gallery-mode resonator.
We find that the optomechanical entanglement and the associated two-mode quantum squeezing can be well tuned in a highly asymmetric way.
arXiv Detail & Related papers (2022-09-26T08:32:36Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Exceptional Photon Blockade: Engineering Photon Blockade with Chiral
Exceptional Points [0.0]
Non-Hermitian spectral degeneracies, known as exceptional points (EPs), feature simultaneous coalescence of both eigenvalues and the associated eigenstates of a system.
Here we show that a purely quantum effect, known as single-photon blockade, emerges in a Kerr microring resonator.
arXiv Detail & Related papers (2020-01-26T18:01:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.