Qudit inspired optimization for graph coloring
- URL: http://arxiv.org/abs/2406.00792v1
- Date: Sun, 2 Jun 2024 16:19:55 GMT
- Title: Qudit inspired optimization for graph coloring
- Authors: David Jansen, Timothy Heightman, Luke Mortimer, Ignacio Perito, Antonio Acín,
- Abstract summary: We introduce a quantum-inspired algorithm for Graph Coloring Problems (GCPs)
We use qudits in a product state, with each qudit representing a node in the graph and parameterized by d-dimensional spherical coordinates.
We benchmark two optimization strategies: qudit gradient descent (QdGD), initiating qudits in random states and employing gradient descent to minimize a cost function.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a quantum-inspired algorithm for Graph Coloring Problems (GCPs) that utilizes qudits in a product state, with each qudit representing a node in the graph and parameterized by d-dimensional spherical coordinates. We propose and benchmark two optimization strategies: qudit gradient descent (QdGD), initiating qudits in random states and employing gradient descent to minimize a cost function, and qudit local quantum annealing (QdLQA), which adapts the local quantum annealing method to optimize an adiabatic transition from a tractable initial function to a problem-specific cost function. Our approaches are benchmarked against established solutions for standard GCPs, showing that our methods not only rival but frequently surpass the performance of recent state-of-the-art algorithms in terms of solution quality and computational efficiency. The adaptability of our algorithm and its high-quality solutions, achieved with minimal computational resources, point to an advancement in the field of quantum-inspired optimization, with potential applications extending to a broad spectrum of optimization problems.
Related papers
- Using Differential Evolution to avoid local minima in Variational
Quantum Algorithms [0.0]
Variational Quantum Algorithms (VQAs) are among the most promising NISQ-era algorithms for harnessing quantum computing.
Our goal in this paper is to study alternative optimization methods that can avoid or reduce the effect of local minima and barren plateau problems.
arXiv Detail & Related papers (2023-03-21T20:31:06Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
Bilevel optimization has been developed with large-scale high-dimensional data.
This paper considers a constrained bilevel problem with convex and non-differentiable approximations.
arXiv Detail & Related papers (2023-02-03T19:34:56Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Avoiding local minima in Variational Quantum Algorithms with Neural
Networks [0.0]
Variational Quantum Algorithms have emerged as a leading paradigm for near-term computation.
In this paper we present two algorithms within benchmark them on instances of the gradient landscape problem.
We suggest that our approach suggests that the cost landscape is a fruitful path to improving near-term quantum computing algorithms.
arXiv Detail & Related papers (2021-04-07T07:07:28Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.