Harvard Undergraduate Survey on Generative AI
- URL: http://arxiv.org/abs/2406.00833v2
- Date: Thu, 8 Aug 2024 02:55:34 GMT
- Title: Harvard Undergraduate Survey on Generative AI
- Authors: Shikoh Hirabayashi, Rishab Jain, Nikola Jurković, Gabriel Wu,
- Abstract summary: We study the influence of AI on the study habits, class choices, and career prospects of Harvard undergraduates.
For roughly 25% of students, AI has begun to substitute for attending office hours and completing required readings.
Half of students are concerned that AI will negatively impact their job prospects, and over half of students wish that Harvard had more classes on the future impacts of AI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How has generative AI impacted the experiences of college students? We study the influence of AI on the study habits, class choices, and career prospects of Harvard undergraduates (n=326), finding that almost 90% of students use generative AI. For roughly 25% of these students, AI has begun to substitute for attending office hours and completing required readings. Half of students are concerned that AI will negatively impact their job prospects, and over half of students wish that Harvard had more classes on the future impacts of AI. We also investigate students' outlook on the broader social implications of AI, finding that half of students are worried that AI will increase economic inequality, and 40% believe that extinction risk from AI should be treated as a global priority with the same urgency as pandemics and nuclear war. Around half of students who have taken a class on AI expect AI to exceed human capabilities on almost all tasks within 30 years. We make some recommendations to the Harvard community in light of these results.
Related papers
- What Do People Think about Sentient AI? [0.0]
We present the first nationally representative survey data on the topic of sentient AI.
Across one wave of data collection in 2021 and two in 2023, we found mind perception and moral concern for AI well-being was higher than predicted.
We argue that, whether or not AIs become sentient, the discussion itself may overhaul human-computer interaction.
arXiv Detail & Related papers (2024-07-11T21:04:39Z) - Lifelong learning challenges in the era of artificial intelligence: a computational thinking perspective [0.0]
The rapid advancement of artificial intelligence (AI) has brought significant challenges to the education and workforce skills required to take advantage of AI for human-AI collaboration in the workplace.
This paper provides a review of the challenges of lifelong learning in the era of AI from a computational thinking perspective.
arXiv Detail & Related papers (2024-05-30T08:46:11Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - Thousands of AI Authors on the Future of AI [1.0717301750064765]
Most respondents expressed substantial uncertainty about the long-term value of AI progress.
More than half suggested that "substantial" or "extreme" concern is warranted about six different AI-related scenarios.
There was disagreement about whether faster or slower AI progress would be better for the future of humanity.
arXiv Detail & Related papers (2024-01-05T14:53:09Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Artificial Intelligence and Life in 2030: The One Hundred Year Study on
Artificial Intelligence [74.2630823914258]
The report examines eight domains of typical urban settings on which AI is likely to have impact over the coming years.
It aims to provide the general public with a scientifically and technologically accurate portrayal of the current state of AI.
The charge for this report was given to the panel by the AI100 Standing Committee, chaired by Barbara Grosz of Harvard University.
arXiv Detail & Related papers (2022-10-31T18:35:36Z) - Challenges of Artificial Intelligence -- From Machine Learning and
Computer Vision to Emotional Intelligence [0.0]
We believe that AI is a helper, not a ruler of humans.
Computer vision has been central to the development of AI.
Emotions are central to human intelligence, but little use has been made in AI.
arXiv Detail & Related papers (2022-01-05T06:00:22Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - The Role of Social Movements, Coalitions, and Workers in Resisting
Harmful Artificial Intelligence and Contributing to the Development of
Responsible AI [0.0]
Coalitions in all sectors are acting worldwide to resist hamful applications of AI.
There are biased, wrongful, and disturbing assumptions embedded in AI algorithms.
Perhaps one of the greatest contributions of AI will be to make us understand how important human wisdom truly is in life on earth.
arXiv Detail & Related papers (2021-07-11T18:51:29Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.