Reservoir History Matching of the Norne field with generative exotic priors and a coupled Mixture of Experts -- Physics Informed Neural Operator Forward Model
- URL: http://arxiv.org/abs/2406.00889v1
- Date: Sun, 2 Jun 2024 23:16:00 GMT
- Title: Reservoir History Matching of the Norne field with generative exotic priors and a coupled Mixture of Experts -- Physics Informed Neural Operator Forward Model
- Authors: Clement Etienam, Yang Juntao, Oleg Ovcharenko, Issam Said,
- Abstract summary: Inverse modelling is achieved via an adaptive Regularized Ensemble Kalman inversion (aREKI) method.
We parametrize unknown permeability and porosity fields for non-Gaussian posterior measures.
The CCR works as a supervised model with the PINO surrogate to replicate nonlinear Peaceman well equations.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed a novel reservoir characterization workflow that addresses reservoir history matching by coupling a physics-informed neural operator (PINO) forward model with a mixture of experts' approach, termed cluster classify regress (CCR). The inverse modelling is achieved via an adaptive Regularized Ensemble Kalman inversion (aREKI) method, ideal for rapid inverse uncertainty quantification during history matching. We parametrize unknown permeability and porosity fields for non-Gaussian posterior measures using a variational convolution autoencoder and a denoising diffusion implicit model (DDIM) exotic priors. The CCR works as a supervised model with the PINO surrogate to replicate nonlinear Peaceman well equations. The CCR's flexibility allows any independent machine-learning algorithm for each stage. The PINO reservoir surrogate's loss function is derived from supervised data loss and losses from the initial conditions and residual of the governing black oil PDE. The PINO-CCR surrogate outputs pressure, water, and gas saturations, along with oil, water, and gas production rates. The methodology was compared to a standard numerical black oil simulator for a waterflooding case on the Norne field, showing similar outputs. This PINO-CCR surrogate was then used in the aREKI history matching workflow, successfully recovering the unknown permeability, porosity and fault multiplier, with simulations up to 6000 times faster than conventional methods. Training the PINO-CCR surrogate on an NVIDIA H100 with 80G memory takes about 5 hours for 100 samples of the Norne field. This workflow is suitable for ensemble-based approaches, where posterior density sampling, given an expensive likelihood evaluation, is desirable for uncertainty quantification.
Related papers
- Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators [8.585650361148558]
We propose a new framework to learn a nonlocal homogenized surrogate model and its structural model error.
This framework provides discrepancy-adaptive uncertainty quantification for homogenized material response predictions in long-term simulations.
arXiv Detail & Related papers (2024-10-27T04:17:27Z) - A Novel A.I Enhanced Reservoir Characterization with a Combined Mixture of Experts -- NVIDIA Modulus based Physics Informed Neural Operator Forward Model [0.6282171844772422]
We have developed an advanced workflow for reservoir characterization, effectively addressing the challenges of reservoir history matching.
This method integrates a Physics Informed Neural Operator (PINO) as a forward model within a sophisticated Cluster Classify Regress framework.
Our integrated model, termed PINO-Res-Sim, outputs crucial parameters including pressures, saturations, and production rates for oil, water, and gas.
arXiv Detail & Related papers (2024-04-20T10:28:24Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) is a generalization of Consistency Models (CM)
CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance.
Unlike CM, CTM's access to the score function can streamline the adoption of established controllable/conditional generation methods.
arXiv Detail & Related papers (2023-10-01T05:07:17Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
We propose a methodology for improving the accuracy of surrogate models of the observable response of physical systems.
We apply the proposed methodology to constructing surrogate models via the Basis Adaptation (BA) method of the stationary hydraulic head response.
arXiv Detail & Related papers (2023-07-05T18:14:38Z) - GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse
Problems with Denoising Diffusion Restoration [64.8770356696056]
We propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown.
The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine-tuning.
arXiv Detail & Related papers (2023-01-30T06:27:48Z) - Deep surrogate accelerated delayed-acceptance HMC for Bayesian inference
of spatio-temporal heat fluxes in rotating disc systems [0.0]
We introduce a deep learning accelerated to methodology to solve PDE-based inverse problems with guaranteed accuracy.
This is motivated by the ill-posed problem inferring a heat-temporal parameter known as the Biot number data.
arXiv Detail & Related papers (2022-04-05T15:09:33Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.