MACT: Model-Agnostic Cross-Lingual Training for Discourse Representation Structure Parsing
- URL: http://arxiv.org/abs/2406.01052v1
- Date: Mon, 3 Jun 2024 07:02:57 GMT
- Title: MACT: Model-Agnostic Cross-Lingual Training for Discourse Representation Structure Parsing
- Authors: Jiangming Liu,
- Abstract summary: We introduce a cross-lingual training strategy for semantic representation parsing models.
It exploits the alignments between languages encoded in pre-trained language models.
Experiments show significant improvements in DRS clause and graph parsing in English, German, Italian and Dutch.
- Score: 4.536003573070846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discourse Representation Structure (DRS) is an innovative semantic representation designed to capture the meaning of texts with arbitrary lengths across languages. The semantic representation parsing is essential for achieving natural language understanding through logical forms. Nevertheless, the performance of DRS parsing models remains constrained when trained exclusively on monolingual data. To tackle this issue, we introduce a cross-lingual training strategy. The proposed method is model-agnostic yet highly effective. It leverages cross-lingual training data and fully exploits the alignments between languages encoded in pre-trained language models. The experiments conducted on the standard benchmarks demonstrate that models trained using the cross-lingual training method exhibit significant improvements in DRS clause and graph parsing in English, German, Italian and Dutch. Comparing our final models to previous works, we achieve state-of-the-art results in the standard benchmarks. Furthermore, the detailed analysis provides deep insights into the performance of the parsers, offering inspiration for future research in DRS parsing. We keep updating new results on benchmarks to the appendix.
Related papers
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data.
We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between latent variables using Optimal Transport.
arXiv Detail & Related papers (2023-07-09T04:52:31Z) - Pre-Trained Language-Meaning Models for Multilingual Parsing and
Generation [14.309869321407522]
We introduce multilingual pre-trained language-meaning models based on Discourse Representation Structures (DRSs)
Since DRSs are language neutral, cross-lingual transfer learning is adopted to further improve the performance of non-English tasks.
automatic evaluation results show that our approach achieves the best performance on both the multilingual DRS parsing and DRS-to-text generation tasks.
arXiv Detail & Related papers (2023-05-31T19:00:33Z) - CLIN-X: pre-trained language models and a study on cross-task transfer
for concept extraction in the clinical domain [22.846469609263416]
We introduce the pre-trained CLIN-X (Clinical XLM-R) language models and show how CLIN-X outperforms other pre-trained transformer models.
Our studies reveal stable model performance despite a lack of annotated data with improvements of up to 47 F1 points when only 250 labeled sentences are available.
Our results highlight the importance of specialized language models as CLIN-X for concept extraction in non-standard domains.
arXiv Detail & Related papers (2021-12-16T10:07:39Z) - Interpreting Language Models Through Knowledge Graph Extraction [42.97929497661778]
We compare BERT-based language models through snapshots of acquired knowledge at sequential stages of the training process.
We present a methodology to unveil a knowledge acquisition timeline by generating knowledge graph extracts from cloze "fill-in-the-blank" statements.
We extend this analysis to a comparison of pretrained variations of BERT models (DistilBERT, BERT-base, RoBERTa)
arXiv Detail & Related papers (2021-11-16T15:18:01Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
We present an information-theoretic framework that formulates cross-lingual language model pre-training.
We propose a new pre-training task based on contrastive learning.
By leveraging both monolingual and parallel corpora, we jointly train the pretext to improve the cross-lingual transferability of pre-trained models.
arXiv Detail & Related papers (2020-07-15T16:58:01Z) - Learning Spoken Language Representations with Neural Lattice Language
Modeling [39.50831917042577]
We propose a framework that trains neural lattice language models to provide contextualized representations for spoken language understanding tasks.
The proposed two-stage pre-training approach reduces the demands of speech data and has better efficiency.
arXiv Detail & Related papers (2020-07-06T10:38:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.