Favi-Score: A Measure for Favoritism in Automated Preference Ratings for Generative AI Evaluation
- URL: http://arxiv.org/abs/2406.01131v1
- Date: Mon, 3 Jun 2024 09:20:46 GMT
- Title: Favi-Score: A Measure for Favoritism in Automated Preference Ratings for Generative AI Evaluation
- Authors: Pius von Däniken, Jan Deriu, Don Tuggener, Mark Cieliebak,
- Abstract summary: We introduce a formal definition of favoritism in preference metrics.
We show that favoritism is strongly related to errors in final system rankings.
We propose that preference-based metrics ought to be evaluated on both sign accuracy scores and favoritism.
- Score: 10.776099974329647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI systems have become ubiquitous for all kinds of modalities, which makes the issue of the evaluation of such models more pressing. One popular approach is preference ratings, where the generated outputs of different systems are shown to evaluators who choose their preferences. In recent years the field shifted towards the development of automated (trained) metrics to assess generated outputs, which can be used to create preference ratings automatically. In this work, we investigate the evaluation of the metrics themselves, which currently rely on measuring the correlation to human judgments or computing sign accuracy scores. These measures only assess how well the metric agrees with the human ratings. However, our research shows that this does not tell the whole story. Most metrics exhibit a disagreement with human system assessments which is often skewed in favor of particular text generation systems, exposing a degree of favoritism in automated metrics. This paper introduces a formal definition of favoritism in preference metrics, and derives the Favi-Score, which measures this phenomenon. In particular we show that favoritism is strongly related to errors in final system rankings. Thus, we propose that preference-based metrics ought to be evaluated on both sign accuracy scores and favoritism.
Related papers
- What is the Best Automated Metric for Text to Motion Generation? [19.71712698183703]
There is growing interest in generating skeleton-based human motions from natural language descriptions.
Human evaluation is the ultimate accuracy measure for this task, and automated metrics should correlate well with human quality judgments.
This paper systematically studies which metrics best align with human evaluations and proposes new metrics that align even better.
arXiv Detail & Related papers (2023-09-19T01:59:54Z) - Correction of Errors in Preference Ratings from Automated Metrics for
Text Generation [4.661309379738428]
We propose a statistical model of Text Generation evaluation that accounts for the error-proneness of automated metrics.
We show that our model enables an efficient combination of human and automated ratings to remedy the error-proneness of the automated metrics.
arXiv Detail & Related papers (2023-06-06T17:09:29Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - The Glass Ceiling of Automatic Evaluation in Natural Language Generation [60.59732704936083]
We take a step back and analyze recent progress by comparing the body of existing automatic metrics and human metrics.
Our extensive statistical analysis reveals surprising findings: automatic metrics -- old and new -- are much more similar to each other than to humans.
arXiv Detail & Related papers (2022-08-31T01:13:46Z) - Re-Examining System-Level Correlations of Automatic Summarization
Evaluation Metrics [64.81682222169113]
How reliably an automatic summarization evaluation metric replicates human judgments of summary quality is quantified by system-level correlations.
We identify two ways in which the definition of the system-level correlation is inconsistent with how metrics are used to evaluate systems in practice.
arXiv Detail & Related papers (2022-04-21T15:52:14Z) - Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand [117.62186420147563]
We propose a generalization of leaderboards, bidimensional leaderboards (Billboards)
Unlike conventional unidimensional leaderboards that sort submitted systems by predetermined metrics, a Billboard accepts both generators and evaluation metrics as competing entries.
We demonstrate that a linear ensemble of a few diverse metrics sometimes substantially outperforms existing metrics in isolation.
arXiv Detail & Related papers (2021-12-08T06:34:58Z) - To Ship or Not to Ship: An Extensive Evaluation of Automatic Metrics for
Machine Translation [5.972205906525993]
We investigate which metrics have the highest accuracy to make system-level quality rankings for pairs of systems.
We show that the sole use of BLEU negatively affected the past development of improved models.
arXiv Detail & Related papers (2021-07-22T17:22:22Z) - Tangled up in BLEU: Reevaluating the Evaluation of Automatic Machine
Translation Evaluation Metrics [64.88815792555451]
We show that current methods for judging metrics are highly sensitive to the translations used for assessment.
We develop a method for thresholding performance improvement under an automatic metric against human judgements.
arXiv Detail & Related papers (2020-06-11T09:12:53Z) - PONE: A Novel Automatic Evaluation Metric for Open-Domain Generative
Dialogue Systems [48.99561874529323]
There are three kinds of automatic methods to evaluate the open-domain generative dialogue systems.
Due to the lack of systematic comparison, it is not clear which kind of metrics are more effective.
We propose a novel and feasible learning-based metric that can significantly improve the correlation with human judgments.
arXiv Detail & Related papers (2020-04-06T04:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.