Logical Reasoning with Relation Network for Inductive Knowledge Graph Completion
- URL: http://arxiv.org/abs/2406.01140v2
- Date: Mon, 22 Jul 2024 02:42:42 GMT
- Title: Logical Reasoning with Relation Network for Inductive Knowledge Graph Completion
- Authors: Qinggang Zhang, Keyu Duan, Junnan Dong, Pai Zheng, Xiao Huang,
- Abstract summary: We propose a novel iNfOmax RelAtion Network, namely NORAN, for inductive KG completion.
Our framework substantially outperforms the state-of-the-art KGC methods.
- Score: 9.815135283458808
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Inductive knowledge graph completion (KGC) aims to infer the missing relation for a set of newly-coming entities that never appeared in the training set. Such a setting is more in line with reality, as real-world KGs are constantly evolving and introducing new knowledge. Recent studies have shown promising results using message passing over subgraphs to embed newly-coming entities for inductive KGC. However, the inductive capability of these methods is usually limited by two key issues. (i) KGC always suffers from data sparsity, and the situation is even exacerbated in inductive KGC where new entities often have few or no connections to the original KG. (ii) Cold-start problem. It is over coarse-grained for accurate KG reasoning to generate representations for new entities by gathering the local information from few neighbors. To this end, we propose a novel iNfOmax RelAtion Network, namely NORAN, for inductive KG completion. It aims to mine latent relation patterns for inductive KG completion. Specifically, by centering on relations, NORAN provides a hyper view towards KG modeling, where the correlations between relations can be naturally captured as entity-independent logical evidence to conduct inductive KGC. Extensive experiment results on five benchmarks show that our framework substantially outperforms the state-of-the-art KGC methods.
Related papers
- Exploiting Large Language Models Capabilities for Question Answer-Driven Knowledge Graph Completion Across Static and Temporal Domains [8.472388165833292]
This paper introduces a new generative completion framework called Generative Subgraph-based KGC (GS-KGC)
GS-KGC employs a question-answering format to directly generate target entities, addressing the challenge of questions having multiple possible answers.
Our method generates negative samples using known facts to facilitate the discovery of new information.
arXiv Detail & Related papers (2024-08-20T13:13:41Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
Temporal KGs (TKGs) extend traditional Knowledge Graphs by associating static triples with timestamps forming quadruples.
We propose a Meta-Learning based Temporal Knowledge Graph Extrapolation (MTKGE) model, which is trained on link prediction tasks sampled from the existing TKGs.
We show that MTKGE consistently outperforms both the existing state-of-the-art models for knowledge graph extrapolation.
arXiv Detail & Related papers (2023-02-11T09:52:26Z) - Relational Message Passing for Fully Inductive Knowledge Graph
Completion [37.29833710603933]
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when KG embeddings are learned, has become a critical challenge.
Subgraph reasoning with message passing is a promising and popular solution.
We propose a new method named RMPI which uses a novel Message Passing network for fully available KGC.
arXiv Detail & Related papers (2022-10-08T10:35:52Z) - Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction [0.0]
We propose a novel model entitled DEKG-ILP (Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction)
The module CLRM is developed to extract global relation-based semantic features that are shared between original KGs and DEKGs.
The module GSM is proposed to extract the local subgraph topological information around each link in KGs.
arXiv Detail & Related papers (2022-09-03T10:58:24Z) - Inductive Knowledge Graph Reasoning for Multi-batch Emerging Entities [22.88552158340435]
Existing inductive work assumes that new entities all emerge once in a batch.
This study dives into a more realistic and challenging setting where new entities emerge in multiple batches.
We propose a walk-based inductive reasoning model to tackle the new setting.
arXiv Detail & Related papers (2022-08-22T14:59:19Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - Rethinking Graph Convolutional Networks in Knowledge Graph Completion [83.25075514036183]
Graph convolutional networks (GCNs) have been increasingly popular in knowledge graph completion (KGC)
In this paper, we build upon representative GCN-based KGC models and introduce variants to find which factor of GCNs is critical in KGC.
We propose a simple yet effective framework named LTE-KGE, which equips existing KGE models with linearly transformed entity embeddings.
arXiv Detail & Related papers (2022-02-08T11:36:18Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
Key to predict future facts is to thoroughly understand the historical facts.
A TKG is actually a sequence of KGs corresponding to different timestamps.
We propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN)
arXiv Detail & Related papers (2021-04-21T05:12:21Z) - Inductive Learning on Commonsense Knowledge Graph Completion [89.72388313527296]
Commonsense knowledge graph (CKG) is a special type of knowledge graph (CKG) where entities are composed of free-form text.
We propose to study the inductive learning setting for CKG completion where unseen entities may present at test time.
InductivE significantly outperforms state-of-the-art baselines in both standard and inductive settings on ATOMIC and ConceptNet benchmarks.
arXiv Detail & Related papers (2020-09-19T16:10:26Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.