Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models
- URL: http://arxiv.org/abs/2406.01436v2
- Date: Fri, 25 Oct 2024 06:20:16 GMT
- Title: Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models
- Authors: Cheng-Hsun Hsueh, Paul Kuo-Ming Huang, Tzu-Han Lin, Che-Wei Liao, Hung-Chieh Fang, Chao-Wei Huang, Yun-Nung Chen,
- Abstract summary: Recent studies have identified side effects, such as knowledge distortion and the deterioration of general abilities, that have emerged after editing.
This survey presents a comprehensive study of these side effects, providing a unified perspective on the challenges of knowledge editing in large language models.
- Score: 26.516571783335824
- License:
- Abstract: Knowledge editing is a rising technique for efficiently updating factual knowledge in large language models (LLMs) with minimal alteration of parameters. However, recent studies have identified side effects, such as knowledge distortion and the deterioration of general abilities, that have emerged after editing. Despite these findings, evaluating the pitfalls of knowledge editing often relies on inconsistent metrics and benchmarks, lacking a uniform standard. In response, this survey presents a comprehensive study of these side effects, providing a unified perspective on the challenges of knowledge editing in LLMs by conducting experiments with consistent metrics and benchmarks. Additionally, we review related works and outline potential research directions to address these limitations. Our survey highlights the limitations of current knowledge editing methods, emphasizing the need for a deeper understanding of the inner knowledge structures of LLMs and improved knowledge editing methods. To foster future research, we have released the complementary materials publicly in https://github.com/MiuLab/EditLLM-Survey.
Related papers
- AnyEdit: Edit Any Knowledge Encoded in Language Models [69.30638272162267]
We propose AnyEdit, a new autoregressive editing paradigm for large language models (LLMs)
It decomposes long-form knowledge into sequential chunks and iteratively edits the key token in each chunk, ensuring consistent and accurate outputs.
It outperforms strong baselines by 21.5% on benchmarks including UnKEBench, AKEW, and our new EditEverything dataset for long-form diverse-formatted knowledge.
arXiv Detail & Related papers (2025-02-08T16:18:37Z) - Related Knowledge Perturbation Matters: Rethinking Multiple Pieces of Knowledge Editing in Same-Subject [49.559994791305535]
Current state-of-the-art editing methods struggle when tasked with editing multiple related knowledge pieces for the same subject.
We introduce the $textS2textRKE$(Same-Subject Related Knowledge Editing) benchmark.
Our experiments reveal that only mainstream locate-then-edit methods, such as ROME and MEMIT, exhibit "related knowledge perturbation"
arXiv Detail & Related papers (2025-02-08T04:47:17Z) - Uncovering Overfitting in Large Language Model Editing [35.55260822503773]
We identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target.
We propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge.
arXiv Detail & Related papers (2024-10-10T11:09:00Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
This paper pioneers the investigation of editing conceptual knowledge for Large Language Models (LLMs)
We construct a novel benchmark dataset ConceptEdit and establish a suite of new metrics for evaluation.
experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge.
arXiv Detail & Related papers (2024-03-10T16:57:10Z) - Editing Factual Knowledge and Explanatory Ability of Medical Large Language Models [89.13883089162951]
Model editing aims to precisely alter the behaviors of large language models (LLMs) in relation to specific knowledge.
This approach has proven effective in addressing issues of hallucination and outdated information in LLMs.
However, the potential of using model editing to modify knowledge in the medical field remains largely unexplored.
arXiv Detail & Related papers (2024-02-28T06:40:57Z) - Knowledge Graph Enhanced Large Language Model Editing [37.6721061644483]
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks.
Existing editing methods struggle to track and incorporate changes in knowledge associated with edits.
We propose a novel model editing method that leverages knowledge graphs for enhancing LLM editing, namely GLAME.
arXiv Detail & Related papers (2024-02-21T07:52:26Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Evaluating Dependencies in Fact Editing for Language Models: Specificity
and Implication Awareness [26.589633375359647]
We aim to ensure that the editing of learned facts respects internal logical constraints, which are known as dependency of knowledge.
Existing work on editing LLMs has partially addressed the issue of dependency, when the editing of a fact should apply to its lexical variations without disrupting irrelevant ones.
We propose an evaluation protocol with an accompanying question-answering dataset, DepEdit, that provides a comprehensive assessment of the editing process.
arXiv Detail & Related papers (2023-12-04T12:45:30Z) - Unveiling the Pitfalls of Knowledge Editing for Large Language Models [41.83423510576848]
It is still unclear whether knowledge editing might introduce side effects that pose potential risks or not.
This paper pioneers the investigation into the potential pitfalls associated with knowledge editing for Large Language Models.
Experimental results vividly demonstrate that knowledge editing might inadvertently cast a shadow of unintended consequences.
arXiv Detail & Related papers (2023-10-03T15:10:46Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLM is a new benchmark for evaluating knowledge editing of large language models.
Experimental results indicate that the current methods for knowledge editing using raw documents are not effective in yielding satisfactory results.
arXiv Detail & Related papers (2023-08-19T09:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.