Learning equivariant tensor functions with applications to sparse vector recovery
- URL: http://arxiv.org/abs/2406.01552v1
- Date: Mon, 3 Jun 2024 17:32:43 GMT
- Title: Learning equivariant tensor functions with applications to sparse vector recovery
- Authors: Wilson G. Gregory, Josué Tonelli-Cueto, Nicholas F. Marshall, Andrew S. Lee, Soledad Villar,
- Abstract summary: We focus on equivariant functions with respect to the diagonal action of the Lorentz and symplectic groups.
Our goal behind these characterizations is to define equivariant machine learning models.
- Score: 5.557442038265024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work characterizes equivariant polynomial functions from tuples of tensor inputs to tensor outputs. Loosely motivated by physics, we focus on equivariant functions with respect to the diagonal action of the orthogonal group on tensors. We show how to extend this characterization to other linear algebraic groups, including the Lorentz and symplectic groups. Our goal behind these characterizations is to define equivariant machine learning models. In particular, we focus on the sparse vector estimation problem. This problem has been broadly studied in the theoretical computer science literature, and explicit spectral methods, derived by techniques from sum-of-squares, can be shown to recover sparse vectors under certain assumptions. Our numerical results show that the proposed equivariant machine learning models can learn spectral methods that outperform the best theoretically known spectral methods in some regimes. The experiments also suggest that learned spectral methods can solve the problem in settings that have not yet been theoretically analyzed. This is an example of a promising direction in which theory can inform machine learning models and machine learning models could inform theory.
Related papers
- Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing [23.754664894759234]
atomistic simulations are crucial for advancing the chemical sciences.
Machine-learned interatomic potentials achieve accuracy on par with ab initio and first-principles methods at a fraction of their computational cost.
arXiv Detail & Related papers (2024-05-23T07:31:20Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - Lorentz group equivariant autoencoders [6.858459233149096]
Lorentz group autoencoder (LGAE)
We develop an autoencoder model equivariant with respect to the proper, orthochronous Lorentz group $mathrmSO+(2,1)$, with a latent space living in the representations of the group.
We present our architecture and several experimental results on jets at the LHC and find it outperforms graph and convolutional neural network baseline models on several compression, reconstruction, and anomaly detection metrics.
arXiv Detail & Related papers (2022-12-14T17:19:46Z) - Group-invariant tensor train networks for supervised learning [0.0]
We introduce a new numerical algorithm to construct a basis of tensors that are invariant under the action of normal matrix representations.
The group-invariant tensors are then combined into a group-invariant tensor train network, which can be used as a supervised machine learning model.
arXiv Detail & Related papers (2022-06-30T06:33:08Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Scalars are universal: Gauge-equivariant machine learning, structured
like classical physics [0.0]
neural networks that respect the gauge symmetries -- or coordinate freedom -- of physical law.
We show that it is simple to parameterize universally approximating functions that are equivariant under these symmetries.
These results demonstrate theoretically that gauge-invariant deep learning models for classical physics with good scaling for large problems are feasible right now.
arXiv Detail & Related papers (2021-06-11T20:51:38Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
We make a emphprecise characterization of the Hessian eigenspectra for a broad family of nonlinear models.
Our analysis takes a step forward to identify the origin of many striking features observed in more complex machine learning models.
arXiv Detail & Related papers (2021-03-02T06:59:52Z) - A Differential Geometry Perspective on Orthogonal Recurrent Models [56.09491978954866]
We employ tools and insights from differential geometry to offer a novel perspective on orthogonal RNNs.
We show that orthogonal RNNs may be viewed as optimizing in the space of divergence-free vector fields.
Motivated by this observation, we study a new recurrent model, which spans the entire space of vector fields.
arXiv Detail & Related papers (2021-02-18T19:39:22Z) - Spectral Learning on Matrices and Tensors [74.88243719463053]
We show that tensor decomposition can pick up latent effects that are missed by matrix methods.
We also outline computational techniques to design efficient tensor decomposition methods.
arXiv Detail & Related papers (2020-04-16T22:53:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.