System-2 Recommenders: Disentangling Utility and Engagement in Recommendation Systems via Temporal Point-Processes
- URL: http://arxiv.org/abs/2406.01611v1
- Date: Wed, 29 May 2024 18:19:37 GMT
- Title: System-2 Recommenders: Disentangling Utility and Engagement in Recommendation Systems via Temporal Point-Processes
- Authors: Arpit Agarwal, Nicolas Usunier, Alessandro Lazaric, Maximilian Nickel,
- Abstract summary: We propose a generative model in which past content interactions impact the arrival rates of users based on a self-exciting Hawkes process.
We show analytically that given samples it is possible to disentangle System-1 and System-2 and allow content optimization based on user utility.
- Score: 80.97898201876592
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recommender systems are an important part of the modern human experience whose influence ranges from the food we eat to the news we read. Yet, there is still debate as to what extent recommendation platforms are aligned with the user goals. A core issue fueling this debate is the challenge of inferring a user utility based on engagement signals such as likes, shares, watch time etc., which are the primary metric used by platforms to optimize content. This is because users utility-driven decision-processes (which we refer to as System-2), e.g., reading news that are relevant for them, are often confounded by their impulsive decision-processes (which we refer to as System-1), e.g., spend time on click-bait news. As a result, it is difficult to infer whether an observed engagement is utility-driven or impulse-driven. In this paper we explore a new approach to recommender systems where we infer user utility based on their return probability to the platform rather than engagement signals. Our intuition is that users tend to return to a platform in the long run if it creates utility for them, while pure engagement-driven interactions that do not add utility, may affect user return in the short term but will not have a lasting effect. We propose a generative model in which past content interactions impact the arrival rates of users based on a self-exciting Hawkes process. These arrival rates to the platform are a combination of both System-1 and System-2 decision processes. The System-2 arrival intensity depends on the utility and has a long lasting effect, while the System-1 intensity depends on the instantaneous gratification and tends to vanish rapidly. We show analytically that given samples it is possible to disentangle System-1 and System-2 and allow content optimization based on user utility. We conduct experiments on synthetic data to demonstrate the effectiveness of our approach.
Related papers
- Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Our Model Achieves Excellent Performance on MovieLens: What Does it Mean? [43.3971105361606]
We conduct a meticulous analysis of the MovieLens dataset.
There are significant differences in user interactions at the different stages when a user interacts with the MovieLens platform.
We discuss the discrepancy between the interaction generation mechanism that is employed by the MovieLens system and that of typical real-world recommendation scenarios.
arXiv Detail & Related papers (2023-07-19T13:44:32Z) - A Transformer-Based User Satisfaction Prediction for Proactive
Interaction Mechanism in DuerOS [12.060990859604681]
We propose a proactive interaction mechanism where the system predicts the user satisfaction with the candidate response before giving it to the user.
If the user is not likely to be satisfied according to the prediction, the system will ask the user a suitable question to determine the real intent of the user.
We deploy and evaluate our model on DuerOS, and observe a 19% relative improvement on the accuracy of user satisfaction prediction and 2.3% relative improvement on user experience.
arXiv Detail & Related papers (2022-12-05T09:17:49Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
We propose a Federated Graph Recommender System (FedGRec) to mitigate privacy concerns.
In our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions.
We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph.
arXiv Detail & Related papers (2022-10-25T01:08:20Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - Offline Reinforcement Learning for Mobile Notifications [1.965345368500676]
Mobile notification systems have taken a major role in driving and maintaining user engagement for online platforms.
Most machine learning applications in notification systems are built around response-prediction models.
We argue that reinforcement learning is a better framework for notification systems in terms of performance and iteration speed.
arXiv Detail & Related papers (2022-02-04T22:22:22Z) - Measuring Recommender System Effects with Simulated Users [19.09065424910035]
Popularity bias and filter bubbles are two of the most well-studied recommender system biases.
We offer a simulation framework for measuring the impact of a recommender system under different types of user behavior.
arXiv Detail & Related papers (2021-01-12T14:51:11Z) - Improving Conversational Question Answering Systems after Deployment
using Feedback-Weighted Learning [69.42679922160684]
We propose feedback-weighted learning based on importance sampling to improve upon an initial supervised system using binary user feedback.
Our work opens the prospect to exploit interactions with real users and improve conversational systems after deployment.
arXiv Detail & Related papers (2020-11-01T19:50:34Z) - Optimizing Interactive Systems via Data-Driven Objectives [70.3578528542663]
We propose an approach that infers the objective directly from observed user interactions.
These inferences can be made regardless of prior knowledge and across different types of user behavior.
We introduce Interactive System (ISO), a novel algorithm that uses these inferred objectives for optimization.
arXiv Detail & Related papers (2020-06-19T20:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.