Towards Harnessing Large Language Models for Comprehension of Conversational Grounding
- URL: http://arxiv.org/abs/2406.01749v1
- Date: Mon, 3 Jun 2024 19:34:39 GMT
- Title: Towards Harnessing Large Language Models for Comprehension of Conversational Grounding
- Authors: Kristiina Jokinen, Phillip Schneider, Taiga Mori,
- Abstract summary: This study investigates the capabilities of large language models in classifying dialogue turns related to explicit or implicit grounding and predicting grounded knowledge elements.
Our experimental results reveal challenges encountered by large language models in the two tasks.
These initiatives aim to develop more effective dialogue systems that are better equipped to handle the intricacies of grounded knowledge in conversations.
- Score: 1.8434042562191812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational grounding is a collaborative mechanism for establishing mutual knowledge among participants engaged in a dialogue. This experimental study analyzes information-seeking conversations to investigate the capabilities of large language models in classifying dialogue turns related to explicit or implicit grounding and predicting grounded knowledge elements. Our experimental results reveal challenges encountered by large language models in the two tasks and discuss ongoing research efforts to enhance large language model-based conversational grounding comprehension through pipeline architectures and knowledge bases. These initiatives aim to develop more effective dialogue systems that are better equipped to handle the intricacies of grounded knowledge in conversations.
Related papers
- Bridging Information Gaps in Dialogues With Grounded Exchanges Using Knowledge Graphs [4.449835214520727]
We study the potential of large language models for conversational grounding.
Our approach involves annotating human conversations across five knowledge domains to create a new dialogue corpus called BridgeKG.
Our findings offer insights into how these models use in-context learning for conversational grounding tasks and common prediction errors.
arXiv Detail & Related papers (2024-08-02T08:07:15Z) - Conversational Grounding: Annotation and Analysis of Grounding Acts and Grounding Units [3.805394793605586]
We present the annotation of two dialog corpora employing Grounding Acts, Grounding Units, and a measure of their degree of grounding.
Our work aims to make conversations with machines better understood and more reliable in natural day-to-day collaborative dialogs.
arXiv Detail & Related papers (2024-03-25T10:39:18Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chat is a Pointer network guided generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs.
The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge.
Based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences.
arXiv Detail & Related papers (2023-04-02T18:23:13Z) - Position Matters! Empirical Study of Order Effect in Knowledge-grounded
Dialogue [54.98184262897166]
We investigate how the order of the knowledge set can influence autoregressive dialogue systems' responses.
We propose a simple and novel technique to alleviate the order effect by modifying the position embeddings of knowledge input.
arXiv Detail & Related papers (2023-02-12T10:13:00Z) - Knowledge Augmented BERT Mutual Network in Multi-turn Spoken Dialogues [6.4144180888492075]
We propose to equip a BERT-based joint model with a knowledge attention module to mutually leverage dialogue contexts between two SLU tasks.
A gating mechanism is further utilized to filter out irrelevant knowledge triples and to circumvent distracting comprehension.
Experimental results in two complicated multi-turn dialogue datasets have demonstrate by mutually modeling two SLU tasks with filtered knowledge and dialogue contexts.
arXiv Detail & Related papers (2022-02-23T04:03:35Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence.
This paper reviews the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task.
In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios.
arXiv Detail & Related papers (2021-10-11T03:52:37Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
We propose KnowExpert to bypass the retrieval process by injecting prior knowledge into the pre-trained language models with lightweight adapters.
Experimental results show that KnowExpert performs comparably with the retrieval-based baselines.
arXiv Detail & Related papers (2021-05-13T12:33:23Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
We review the previous methods from the perspective of dialogue modeling.
We discuss three typical patterns of dialogue modeling that are widely-used in dialogue comprehension tasks.
arXiv Detail & Related papers (2021-03-04T15:50:17Z) - Multi-turn Dialogue Reading Comprehension with Pivot Turns and Knowledge [43.352833140317486]
Multi-turn dialogue reading comprehension aims to teach machines to read dialogue contexts and solve tasks such as response selection and answering questions.
This work makes the first attempt to tackle the above two challenges by extracting substantially important turns as pivot utterances.
We propose a pivot-oriented deep selection model (PoDS) on top of the Transformer-based language models for dialogue comprehension.
arXiv Detail & Related papers (2021-02-10T15:00:12Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
Task-oriented dialog systems are attracting more and more attention in academic and industrial communities.
We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning, and (3) integrating domain knowledge into the dialog model.
arXiv Detail & Related papers (2020-03-17T01:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.