Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification
- URL: http://arxiv.org/abs/2406.01753v1
- Date: Mon, 3 Jun 2024 19:43:06 GMT
- Title: Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification
- Authors: Fred Lu, Ryan R. Curtin, Edward Raff, Francis Ferraro, James Holt,
- Abstract summary: ACOWA allows an extra round of communication to achieve noticeably better approximation quality with minor runtime increases.
Results show that ACOWA obtains solutions that are more faithful to the empirical risk minimizer and attain substantially higher accuracy than other distributed algorithms.
- Score: 50.406127962933915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While distributed training is often viewed as a solution to optimizing linear models on increasingly large datasets, inter-machine communication costs of popular distributed approaches can dominate as data dimensionality increases. Recent work on non-interactive algorithms shows that approximate solutions for linear models can be obtained efficiently with only a single round of communication among machines. However, this approximation often degenerates as the number of machines increases. In this paper, building on the recent optimal weighted average method, we introduce a new technique, ACOWA, that allows an extra round of communication to achieve noticeably better approximation quality with minor runtime increases. Results show that for sparse distributed logistic regression, ACOWA obtains solutions that are more faithful to the empirical risk minimizer and attain substantially higher accuracy than other distributed algorithms.
Related papers
- High-Dimensional Distributed Sparse Classification with Scalable Communication-Efficient Global Updates [50.406127962933915]
We develop solutions to problems which enable us to learn a communication-efficient distributed logistic regression model.
In our experiments we demonstrate a large improvement in accuracy over distributed algorithms with only a few distributed update steps needed.
arXiv Detail & Related papers (2024-07-08T19:34:39Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
We show how different variants of DRO are simply instances of a finite-sum composite optimization for which we provide scalable methods.
We also provide empirical results that demonstrate the effectiveness of our proposed algorithm with respect to the prior art in order to learn robust models from very large datasets.
arXiv Detail & Related papers (2022-03-17T20:47:42Z) - On Accelerating Distributed Convex Optimizations [0.0]
This paper studies a distributed multi-agent convex optimization problem.
We show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods.
We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems.
arXiv Detail & Related papers (2021-08-19T13:19:54Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Progressive Batching for Efficient Non-linear Least Squares [31.082253632197023]
Most improvements of the basic Gauss-Newton tackle convergence guarantees or leverage the sparsity of the underlying problem structure for computational speedup.
Our work borrows ideas from both machine learning and statistics, and we present an approach for non-linear least-squares that guarantees convergence while at the same time significantly reduces the required amount of computation.
arXiv Detail & Related papers (2020-10-21T13:00:04Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Communication-efficient Variance-reduced Stochastic Gradient Descent [0.0]
We consider the problem of communication efficient distributed optimization.
In particular, we focus on the variance-reduced gradient and propose a novel approach to make it communication-efficient.
Comprehensive theoretical and numerical analyses on real datasets reveal that our algorithm can significantly reduce the communication complexity, by as much as 95%, with almost no noticeable penalty.
arXiv Detail & Related papers (2020-03-10T13:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.