Generating Synthetic Net Load Data with Physics-informed Diffusion Model
- URL: http://arxiv.org/abs/2406.01913v1
- Date: Tue, 4 Jun 2024 02:50:19 GMT
- Title: Generating Synthetic Net Load Data with Physics-informed Diffusion Model
- Authors: Shaorong Zhang, Yuanbin Cheng, Nanpeng Yu,
- Abstract summary: A conditional denoising neural network is designed to jointly train the parameters of the transition kernel of the diffusion model.
A comprehensive set of evaluation metrics is used to assess the accuracy and diversity of the generated synthetic net load data.
- Score: 0.8848340429852071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel physics-informed diffusion model for generating synthetic net load data, addressing the challenges of data scarcity and privacy concerns. The proposed framework embeds physical models within denoising networks, offering a versatile approach that can be readily generalized to unforeseen scenarios. A conditional denoising neural network is designed to jointly train the parameters of the transition kernel of the diffusion model and the parameters of the physics-informed function. Utilizing the real-world smart meter data from Pecan Street, we validate the proposed method and conduct a thorough numerical study comparing its performance with state-of-the-art generative models, including generative adversarial networks, variational autoencoders, normalizing flows, and a well calibrated baseline diffusion model. A comprehensive set of evaluation metrics is used to assess the accuracy and diversity of the generated synthetic net load data. The numerical study results demonstrate that the proposed physics-informed diffusion model outperforms state-of-the-art models across all quantitative metrics, yielding at least 20% improvement.
Related papers
- Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
We employ Bayesian neural networks to capture uncertainties in a reacting flow model.
We demonstrate that BNN models can provide unique insights about the structure of uncertainty of the data-driven closure models.
The efficacy of the model is demonstrated by a priori evaluation on a dataset consisting of a variety of flame conditions and fuels.
arXiv Detail & Related papers (2024-02-28T22:19:55Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.