Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs
- URL: http://arxiv.org/abs/2406.01943v1
- Date: Tue, 4 Jun 2024 03:54:53 GMT
- Title: Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs
- Authors: Nik Bear Brown,
- Abstract summary: This paper surveys evaluation techniques to enhance the trustworthiness and understanding of Large Language Models (LLMs)
Key evaluation metrics include Perplexity Measurement, NLP metrics (BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, Character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, and Fairness and Bias Evaluation.
- Score: 1.0878040851638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper surveys evaluation techniques to enhance the trustworthiness and understanding of Large Language Models (LLMs). As reliance on LLMs grows, ensuring their reliability, fairness, and transparency is crucial. We explore algorithmic methods and metrics to assess LLM performance, identify weaknesses, and guide development towards more trustworthy applications. Key evaluation metrics include Perplexity Measurement, NLP metrics (BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, Character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, and Fairness and Bias Evaluation. We introduce innovative approaches like LLMMaps for stratified evaluation, Benchmarking and Leaderboards for competitive assessment, Stratified Analysis for in-depth understanding, Visualization of Blooms Taxonomy for cognitive level accuracy distribution, Hallucination Score for quantifying inaccuracies, Knowledge Stratification Strategy for hierarchical analysis, and Machine Learning Models for Hierarchy Generation. Human Evaluation is highlighted for capturing nuances that automated metrics may miss. These techniques form a framework for evaluating LLMs, aiming to enhance transparency, guide development, and establish user trust. Future papers will describe metric visualization and demonstrate each approach on practical examples.
Related papers
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.
In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.
This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Position: LLM Unlearning Benchmarks are Weak Measures of Progress [31.957968729934745]
We find that existing benchmarks provide an overly optimistic and potentially misleading view on the effectiveness of candidate unlearning methods.
We identify that existing benchmarks are particularly vulnerable to modifications that introduce even loose dependencies between the forget and retain information.
arXiv Detail & Related papers (2024-10-03T18:07:25Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, prompting a surge in their practical applications.
This paper introduces TrustScore, a framework based on the concept of Behavioral Consistency, which evaluates whether an LLMs response aligns with its intrinsic knowledge.
arXiv Detail & Related papers (2024-02-19T21:12:14Z) - The Generative AI Paradox on Evaluation: What It Can Solve, It May Not
Evaluate [17.77014177096838]
This paper explores the assumption that Large Language Models (LLMs) skilled in generation tasks are equally adept as evaluators.
We assess the performance of three LLMs and one open-source LM in Question-Answering (QA) and evaluation tasks using the TriviaQA dataset.
arXiv Detail & Related papers (2024-02-09T06:16:08Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
We construct a Knowledge-oriented LLM Assessment benchmark (KoLA)
We mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks.
We use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, to evaluate the capacity to handle unseen data and evolving knowledge.
arXiv Detail & Related papers (2023-06-15T17:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.