Multi-Scale Direction-Aware Network for Infrared Small Target Detection
- URL: http://arxiv.org/abs/2406.02037v2
- Date: Mon, 25 Nov 2024 12:49:46 GMT
- Title: Multi-Scale Direction-Aware Network for Infrared Small Target Detection
- Authors: Jinmiao Zhao, Zelin Shi, Chuang Yu, Yunpeng Liu,
- Abstract summary: Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target.
We propose a multi-scale direction-aware network (MSDA-Net) to integrate the high-frequency directional features of infrared small targets.
MSDA-Net achieves state-of-the-art (SOTA) results on the public NUDT-SIRST, SIRST and IRSTD-1k datasets.
- Score: 2.661766509317245
- License:
- Abstract: Infrared small target detection faces the problem that it is difficult to effectively separate the background and the target. Existing deep learning-based methods focus on appearance features and ignore high-frequency directional features. Therefore, we propose a multi-scale direction-aware network (MSDA-Net), which is the first attempt to integrate the high-frequency directional features of infrared small targets as domain prior knowledge into neural networks. Specifically, an innovative multi-directional feature awareness (MDFA) module is constructed, which fully utilizes the prior knowledge of targets and emphasizes the focus on high-frequency directional features. On this basis, combined with the multi-scale local relation learning (MLRL) module, a multi-scale direction-aware (MSDA) module is further constructed. The MSDA module promotes the full extraction of local relations at different scales and the full perception of key features in different directions. Meanwhile, a high-frequency direction injection (HFDI) module without training parameters is constructed to inject the high-frequency directional information of the original image into the network. This helps guide the network to pay attention to detailed information such as target edges and shapes. In addition, we propose a feature aggregation (FA) structure that aggregates multi-level features to solve the problem of small targets disappearing in deep feature maps. Furthermore, a lightweight feature alignment fusion (FAF) module is constructed, which can effectively alleviate the pixel offset existing in multi-level feature map fusion. Extensive experimental results show that our MSDA-Net achieves state-of-the-art (SOTA) results on the public NUDT-SIRST, SIRST and IRSTD-1k datasets.
Related papers
- Paying more attention to local contrast: improving infrared small target detection performance via prior knowledge [11.865797842063884]
This paper proposes the Local Contrast Attention Enhanced infrared small target detection Network (LCAE-Net)
Our model has a parameter count and Floating-Point Operations (FLOPs) of 1.945M and 4.862G respectively, which is suitable for deployment on edge devices.
arXiv Detail & Related papers (2024-11-20T12:21:30Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Single-Point Supervised High-Resolution Dynamic Network for Infrared Small Target Detection [7.0456782736205685]
We propose a single-point supervised high-resolution dynamic network (SSHD-Net)
It achieves state-of-the-art (SOTA) detection performance using only single-point supervision.
Experiments on the publicly available datasets NUDT-SIRST and IRSTD-1k demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-08-04T09:44:47Z) - HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection [16.92362922379821]
We propose a deep learning method to improve infrared small object detection performance.
The method includes the parallelized patch-aware attention (PPA) module, dimension-aware selective integration (DASI) module, and multi-dilated channel refiner (MDCR) module.
arXiv Detail & Related papers (2024-03-16T02:45:42Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
We propose a novel Global Extraction Local Exploration Network (GeleNet) for Optical Remote Sensing Images (ORSI-SOD)
Specifically, GeleNet first adopts a transformer backbone to generate four-level feature embeddings with global long-range dependencies.
Extensive experiments on three public datasets demonstrate that the proposed GeleNet outperforms relevant state-of-the-art methods.
arXiv Detail & Related papers (2023-09-15T07:14:43Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Dense Nested Attention Network for Infrared Small Target Detection [36.654692765557726]
Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds.
Existing CNN-based methods cannot be directly applied for infrared small targets.
We propose a dense nested attention network (DNANet) in this paper.
arXiv Detail & Related papers (2021-06-01T13:45:35Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
We propose an end-to-end Dense Attention Fluid Network (DAFNet) for salient object detection in optical remote sensing images (RSIs)
A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships.
We construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations.
arXiv Detail & Related papers (2020-11-26T06:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.