Towards Universal and Black-Box Query-Response Only Attack on LLMs with QROA
- URL: http://arxiv.org/abs/2406.02044v3
- Date: Tue, 06 May 2025 22:24:50 GMT
- Title: Towards Universal and Black-Box Query-Response Only Attack on LLMs with QROA
- Authors: Hussein Jawad, Yassine Chenik, Nicolas J. -B. Brunel,
- Abstract summary: We introduce QROA, a black-box jailbreak method to identify adversarial suffixes when appended to a malicious instruction.<n>Unlike existing suffix-based jailbreak approaches, QROA does not require access to the model's logit or any other internal information.<n>We also propose QROA-UNV, an extension that identifies universal adversarial suffixes for individual models.
- Score: 2.4578723416255754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid adoption of Large Language Models (LLMs) has exposed critical security and ethical vulnerabilities, particularly their susceptibility to adversarial manipulations. This paper introduces QROA, a novel black-box jailbreak method designed to identify adversarial suffixes that can bypass LLM alignment safeguards when appended to a malicious instruction. Unlike existing suffix-based jailbreak approaches, QROA does not require access to the model's logit or any other internal information. It also eliminates reliance on human-crafted templates, operating solely through the standard query-response interface of LLMs. By framing the attack as an optimization bandit problem, QROA employs a surrogate model and token level optimization to efficiently explore suffix variations. Furthermore, we propose QROA-UNV, an extension that identifies universal adversarial suffixes for individual models, enabling one-query jailbreaks across a wide range of instructions. Testing on multiple models demonstrates Attack Success Rate (ASR) greater than 80\%. These findings highlight critical vulnerabilities, emphasize the need for advanced defenses, and contribute to the development of more robust safety evaluations for secure AI deployment. The code is made public on the following link: https://github.com/qroa/QROA
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs [39.85609149662187]
We present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs.<n>Our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs.<n>Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models.
arXiv Detail & Related papers (2025-07-15T08:44:46Z) - Prefill-Based Jailbreak: A Novel Approach of Bypassing LLM Safety Boundary [2.4329261266984346]
Large Language Models (LLMs) are designed to generate helpful and safe content.
adversarial attacks, commonly referred to as jailbreak, can bypass their safety protocols.
We introduce a novel jailbreak attack method that leverages the prefilling feature of LLMs.
arXiv Detail & Related papers (2025-04-28T07:38:43Z) - Exploiting Prefix-Tree in Structured Output Interfaces for Enhancing Jailbreak Attacking [34.479355499938116]
Large Language Models (LLMs) have led to significant applications but also introduced serious security threats.<n>We introduce a black-box attack framework called AttackPrefixTree (APT)<n>APT exploits structured output interfaces to dynamically construct attack patterns.<n> Experiments on benchmark datasets indicate that this approach achieves higher attack success rate than existing methods.
arXiv Detail & Related papers (2025-02-19T08:29:36Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
Large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks.
This vulnerability poses significant risks to real-world applications.
We propose a novel defensive paradigm called GuidelineLLM.
arXiv Detail & Related papers (2024-12-10T12:42:33Z) - DROJ: A Prompt-Driven Attack against Large Language Models [0.0]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks.
Despite massive alignment efforts, LLMs remain susceptible to adversarial jailbreak attacks.
We introduce a novel approach, Directed Rrepresentation Optimization Jailbreak (DROJ)
arXiv Detail & Related papers (2024-11-14T01:48:08Z) - Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer [33.67942887761857]
We present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes.
We employ task prompts to translate jailbreaking goals into natural language instructions, which guides the LLM to generate adversarial suffixes for malicious queries.
ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times.
arXiv Detail & Related papers (2024-08-21T03:35:24Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
We propose a plug-and-play and easy-to-deploy jailbreak defense framework, namely Prefix Guidance (PG)
PG guides the model to identify harmful prompts by directly setting the first few tokens of the model's output.
We demonstrate the effectiveness of PG across three models and five attack methods.
arXiv Detail & Related papers (2024-08-15T14:51:32Z) - Kov: Transferable and Naturalistic Black-Box LLM Attacks using Markov Decision Processes and Tree Search [1.223779595809275]
Eliciting harmful behavior from large language models (LLMs) is an important task to ensure the proper alignment and safety of the models.
This work frames the red-teaming problem as a Markov decision process (MDP) and uses Monte Carlo tree search to find harmful behaviors of black-box, closed-source LLMs.
The proposed algorithm, Kov, trains on white-box LLMs to optimize the adversarial attacks and periodically evaluates responses from the black-box LLM to guide the search towards more harmful black-box behaviors.
arXiv Detail & Related papers (2024-08-11T20:31:52Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.<n>We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.<n>Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)<n>Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.<n> Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
Large language models (LLMs) are increasingly being adopted in a wide range of real-world applications.
Recent studies have shown that LLMs are vulnerable to deliberately crafted adversarial prompts.
We propose a novel defense method termed textbfLayer-specific textbfEditing (LED) to enhance the resilience of LLMs against jailbreak attacks.
arXiv Detail & Related papers (2024-05-28T13:26:12Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer.
To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback.
Recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails.
This paper proposes a method called Gradient Cuff to detect jailbreak attempts.
arXiv Detail & Related papers (2024-03-01T03:29:54Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - PAL: Proxy-Guided Black-Box Attack on Large Language Models [55.57987172146731]
Large Language Models (LLMs) have surged in popularity in recent months, but they have demonstrated capabilities to generate harmful content when manipulated.
We introduce the Proxy-Guided Attack on LLMs (PAL), the first optimization-based attack on LLMs in a black-box query-only setting.
Our attack achieves 84% attack success rate (ASR) on GPT-3.5-Turbo and 48% on Llama-2-7B, compared to 4% for the current state of the art.
arXiv Detail & Related papers (2024-02-15T02:54:49Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks.
Recent studies suggest that defending against these attacks is possible: adversarial attacks generate unlimited but unreadable gibberish prompts, detectable by perplexity-based filters.
We introduce AutoDAN, an interpretable, gradient-based adversarial attack that merges the strengths of both attack types.
arXiv Detail & Related papers (2023-10-23T17:46:07Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
We introduce AutoDAN, a novel jailbreak attack against aligned Large Language Models.
AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.
arXiv Detail & Related papers (2023-10-03T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.