CAP: A Context-Aware Neural Predictor for NAS
- URL: http://arxiv.org/abs/2406.02056v1
- Date: Tue, 4 Jun 2024 07:37:47 GMT
- Title: CAP: A Context-Aware Neural Predictor for NAS
- Authors: Han Ji, Yuqi Feng, Yanan Sun,
- Abstract summary: We propose a context-aware neural predictor (CAP) which only needs a few annotated architectures for training.
Experimental results in different search spaces demonstrate the superior performance of CAP compared with state-of-the-art neural predictors.
- Score: 4.8761456288582945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural predictors are effective in boosting the time-consuming performance evaluation stage in neural architecture search (NAS), owing to their direct estimation of unseen architectures. Despite the effectiveness, training a powerful neural predictor with fewer annotated architectures remains a huge challenge. In this paper, we propose a context-aware neural predictor (CAP) which only needs a few annotated architectures for training based on the contextual information from the architectures. Specifically, the input architectures are encoded into graphs and the predictor infers the contextual structure around the nodes inside each graph. Then, enhanced by the proposed context-aware self-supervised task, the pre-trained predictor can obtain expressive and generalizable representations of architectures. Therefore, only a few annotated architectures are sufficient for training. Experimental results in different search spaces demonstrate the superior performance of CAP compared with state-of-the-art neural predictors. In particular, CAP can rank architectures precisely at the budget of only 172 annotated architectures in NAS-Bench-101. Moreover, CAP can help find promising architectures in both NAS-Bench-101 and DARTS search spaces on the CIFAR-10 dataset, serving as a useful navigator for NAS to explore the search space efficiently.
Related papers
- FR-NAS: Forward-and-Reverse Graph Predictor for Efficient Neural Architecture Search [10.699485270006601]
We introduce a novel Graph Neural Networks (GNN) predictor for Neural Architecture Search (NAS)
This predictor renders neural architectures into vector representations by combining both the conventional and inverse graph views.
The experimental results showcase a significant improvement in prediction accuracy, with a 3%--16% increase in Kendall-tau correlation.
arXiv Detail & Related papers (2024-04-24T03:22:49Z) - A General-Purpose Transferable Predictor for Neural Architecture Search [22.883809911265445]
We propose a general-purpose neural predictor for Neural Architecture Search (NAS) that can transfer across search spaces.
Experimental results on NAS-Bench-101, 201 and 301 demonstrate the efficacy of our scheme.
arXiv Detail & Related papers (2023-02-21T17:28:05Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
We propose to apply neural architecture search (NAS) techniques to automatically configure the SER models.
We show that NAS can improve SER performance (54.89% to 56.28%) while maintaining model parameter sizes.
arXiv Detail & Related papers (2022-03-31T10:16:10Z) - Network Graph Based Neural Architecture Search [57.78724765340237]
We search neural network by rewiring the corresponding graph and predict the architecture performance by graph properties.
Because we do not perform machine learning over the entire graph space, the searching process is remarkably efficient.
arXiv Detail & Related papers (2021-12-15T00:12:03Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost.
This paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions.
We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability.
arXiv Detail & Related papers (2021-11-25T18:13:42Z) - RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
Successive Halving [74.61723678821049]
We propose NOn-uniform Successive Halving (NOSH), a hierarchical scheduling algorithm that terminates the training of underperforming architectures early to avoid wasting budget.
We formulate predictor-based architecture search as learning to rank with pairwise comparisons.
The resulting method - RANK-NOSH, reduces the search budget by 5x while achieving competitive or even better performance than previous state-of-the-art predictor-based methods on various spaces and datasets.
arXiv Detail & Related papers (2021-08-18T07:45:21Z) - Homogeneous Architecture Augmentation for Neural Predictor [13.35821898997164]
Neural Architecture Search (NAS) can automatically design well-performed architectures of Deep Neural Networks (DNNs) for the tasks at hand.
One bottleneck of NAS is the computational cost largely due to the expensive performance evaluation.
Despite their popularity, they also suffer a severe limitation: the shortage of annotated DNN architectures for effectively training the neural predictors.
arXiv Detail & Related papers (2021-07-28T03:46:33Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
Recent predictor-based NAS approaches attempt to solve the problem with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor.
We shift the paradigm from finding a complicated predictor that covers the whole architecture space to a set of weaker predictors that progressively move towards the high-performance sub-space.
Our method costs fewer samples to find the top-performance architectures on NAS-Bench-101 and NAS-Bench-201, and it achieves the state-of-the-art ImageNet performance on the NASNet search space.
arXiv Detail & Related papers (2021-02-21T01:58:43Z) - Neural Architecture Performance Prediction Using Graph Neural Networks [17.224223176258334]
We propose a surrogate model for neural architecture performance prediction built upon Graph Neural Networks (GNN)
We demonstrate the effectiveness of this surrogate model on neural architecture performance prediction for structurally unknown architectures.
arXiv Detail & Related papers (2020-10-19T09:33:57Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.