Cross-Rollup MEV: Non-Atomic Arbitrage Across L2 Blockchains
- URL: http://arxiv.org/abs/2406.02172v2
- Date: Thu, 17 Oct 2024 09:02:16 GMT
- Title: Cross-Rollup MEV: Non-Atomic Arbitrage Across L2 Blockchains
- Authors: Krzysztof Gogol, Johnnatan Messias, Deborah Miori, Claudio Tessone, Benjamin Livshits,
- Abstract summary: This study quantifies the potential non-atomic MEV on Layer-2 (L2) blockchains by measuring the arbitrage opportunities between cross-rollup and DEX-CEX.
By analyzing the costs of swap on L2s and price discrepancies cross-rollup and DEX-CEX, we identify more than 500 000 unexplored arbitrage opportunities.
- Score: 6.892626226074608
- License:
- Abstract: This study quantifies the potential non-atomic MEV on Layer-2 (L2) blockchains by measuring the arbitrage opportunities between cross-rollup and DEX-CEX. Over recent years, we observe a shift in trading activities from Ethereum to rollups, with swaps on rollups occurring 2-3 times more frequently, albeit with lower trade volumes. By analyzing the costs of swap on L2s and price discrepancies cross-rollup and DEX-CEX, we identify more than 500 000 unexplored arbitrage opportunities. In particular, we find that these opportunities persist, on average, for 10 to 20 blocks, necessitating the modification of the Loss Versus Rebalancing (LVR) metric to prevent double-counting. Our findings indicate that the arbitrage opportunities in Arbitrum, Base, and Optimism range between 0.03% and 0.05% of the trading volume, while in the ZKsync it fluctuates around 0.25%.
Related papers
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Trading Volume Maximization with Online Learning [3.8059763597999012]
We investigate how the broker should behave to maximize the trading volume.
We model the traders' valuations as an i.i.d. process with an unknown distribution.
If only their willingness to sell or buy at the proposed price is revealed after each interaction, we provide an algorithm achieving poly-logarithmic regret.
arXiv Detail & Related papers (2024-05-21T17:26:44Z) - Rolling in the Shadows: Analyzing the Extraction of MEV Across Layer-2 Rollups [13.27494645366702]
Decentralized finance embraces a series of exploitative economic practices known as Maximal Extractable Value (MEV)
In this paper, we investigate the prevalence and impact of MEV on prominent rollups such as Arbitrum, and zkSync over a nearly three-year period.
While our findings did not detect any sandwiching activity on popular rollups, we did identify the potential for cross-layer sandwich attacks.
arXiv Detail & Related papers (2024-04-30T18:34:32Z) - Quantifying Arbitrage in Automated Market Makers: An Empirical Study of Ethereum ZK Rollups [6.892626226074608]
This work systematically reviews arbitrage opportunities between Automated Market Makers (AMMs) on ZK rollups, and Centralised Exchanges (CEXs)
We propose a theoretical framework to measure such arbitrage opportunities and derive a formula for the related Maximal Arbitrage Value (MAV)
Overall, the cumulative MAV from July to 2023 on the USDC-ETH SyncSwap pool amounts to $104.96k (0.24% of trading volume)
arXiv Detail & Related papers (2024-03-24T10:26:34Z) - Understanding the Security Risks of Decentralized Exchanges by Uncovering Unfair Trades in the Wild [28.63088626240589]
DEX, or decentralized exchange, is a prominent class of decentralized finance (DeFi) applications on blockchains.
This paper presents the first large-scale empirical study that uncovers unfair trades on popular DEX services.
arXiv Detail & Related papers (2024-01-21T17:25:57Z) - Don't Let MEV Slip: The Costs of Swapping on the Uniswap Protocol [0.17999333451993949]
We present the first empirical characterization of the costs of trading on a decentralized exchange (DEX)
Using quoted prices from the Uniswap Labs interface, we evaluate the efficiency of trading on DEXs.
Our results provide preliminary evidence that DEXs offer a compelling trust-less alternative to centralized exchanges for trading digital assets.
arXiv Detail & Related papers (2023-09-24T14:22:15Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
Decentralized Exchanges (DEXs) are new types of marketplaces leveraging technology.
One such DEX, Uniswap v3, allows liquidity providers to allocate funds more efficiently by specifying an active price interval for their funds.
This introduces the problem of finding an optimal strategy for choosing price intervals.
We formalize this problem as an online learning problem with non-stochastic rewards.
arXiv Detail & Related papers (2023-02-01T17:21:40Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
The Non-Fungible Token (NFT) market experienced explosive growth in 2021, with a monthly trade volume reaching $6 billion in January 2022.
Concerns have emerged about possible wash trading, a form of market manipulation in which one party repeatedly trades an NFT to inflate its volume artificially.
We find that wash trading affects 5.66% of all NFT collections, with a total artificial volume of $3,406,110,774.
arXiv Detail & Related papers (2022-12-02T15:03:35Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern.
This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts.
arXiv Detail & Related papers (2022-05-27T08:38:20Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.