I4VGen: Image as Free Stepping Stone for Text-to-Video Generation
- URL: http://arxiv.org/abs/2406.02230v2
- Date: Thu, 03 Oct 2024 06:36:14 GMT
- Title: I4VGen: Image as Free Stepping Stone for Text-to-Video Generation
- Authors: Xiefan Guo, Jinlin Liu, Miaomiao Cui, Liefeng Bo, Di Huang,
- Abstract summary: We present I4VGen, a novel video diffusion inference pipeline to enhance pre-trained text-to-video diffusion models.
I4VGen consists of two stages: anchor image synthesis and anchor image-augmented text-to-video synthesis.
Experiments show that the proposed method produces videos with higher visual realism and textual fidelity datasets.
- Score: 28.910648256877113
- License:
- Abstract: Text-to-video generation has trailed behind text-to-image generation in terms of quality and diversity, primarily due to the inherent complexities of spatio-temporal modeling and the limited availability of video-text datasets. Recent text-to-video diffusion models employ the image as an intermediate step, significantly enhancing overall performance but incurring high training costs. In this paper, we present I4VGen, a novel video diffusion inference pipeline to leverage advanced image techniques to enhance pre-trained text-to-video diffusion models, which requires no additional training. Instead of the vanilla text-to-video inference pipeline, I4VGen consists of two stages: anchor image synthesis and anchor image-augmented text-to-video synthesis. Correspondingly, a simple yet effective generation-selection strategy is employed to achieve visually-realistic and semantically-faithful anchor image, and an innovative noise-invariant video score distillation sampling (NI-VSDS) is developed to animate the image to a dynamic video by distilling motion knowledge from video diffusion models, followed by a video regeneration process to refine the video. Extensive experiments show that the proposed method produces videos with higher visual realism and textual fidelity. Furthermore, I4VGen also supports being seamlessly integrated into existing image-to-video diffusion models, thereby improving overall video quality.
Related papers
- Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
We present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 816 videos on a single GPU.
Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation.
To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers.
arXiv Detail & Related papers (2023-10-16T19:03:19Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Teller is a video-language foundation model that leverages multi-modal fusion and fine-grained modality alignment.
Video-Teller boosts the training efficiency by utilizing frozen pretrained vision and language modules.
It capitalizes on the robust linguistic capabilities of large language models, enabling the generation of both concise and elaborate video descriptions.
arXiv Detail & Related papers (2023-10-08T03:35:27Z) - VideoGen: A Reference-Guided Latent Diffusion Approach for High
Definition Text-to-Video Generation [73.54366331493007]
VideoGen is a text-to-video generation approach, which can generate a high-definition video with high frame fidelity and strong temporal consistency.
We leverage an off-the-shelf text-to-image generation model, e.g., Stable Diffusion, to generate an image with high content quality from the text prompt.
arXiv Detail & Related papers (2023-09-01T11:14:43Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Video is a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps.
We propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process.
Our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation.
arXiv Detail & Related papers (2023-05-23T09:03:19Z) - Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style
Transfer [13.098901971644656]
This paper proposes a zero-shot video stylization method named Style-A-Video.
Uses a generative pre-trained transformer with an image latent diffusion model to achieve a concise text-controlled video stylization.
Tests show that we can attain superior content preservation and stylistic performance while incurring less consumption than previous solutions.
arXiv Detail & Related papers (2023-05-09T14:03:27Z) - Make-A-Video: Text-to-Video Generation without Text-Video Data [69.20996352229422]
Make-A-Video is an approach for translating the tremendous recent progress in Text-to-Image (T2I) generation to Text-to-Video (T2V)
We design a simple yet effective way to build on T2I models with novel and effective spatial-temporal modules.
In all aspects, spatial and temporal resolution, faithfulness to text, and quality, Make-A-Video sets the new state-of-the-art in text-to-video generation.
arXiv Detail & Related papers (2022-09-29T13:59:46Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
Multi-channel video-language retrieval require models to understand information from different channels.
contrastive multimodal models are shown to be highly effective at aligning entities in images/videos and text.
There is not a clear way to quickly adapt these two lines to multi-channel video-language retrieval with limited data and resources.
arXiv Detail & Related papers (2022-06-05T01:43:52Z) - TiVGAN: Text to Image to Video Generation with Step-by-Step Evolutionary
Generator [34.7504057664375]
We propose a novel training framework, Text-to-Image-to-Video Generative Adversarial Network (TiVGAN), which evolves frame-by-frame and finally produces a full-length video.
Step-by-step learning process helps stabilize the training and enables the creation of high-resolution video based on conditional text descriptions.
arXiv Detail & Related papers (2020-09-04T06:33:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.