Online Fair Allocation of Perishable Resources
- URL: http://arxiv.org/abs/2406.02402v1
- Date: Tue, 4 Jun 2024 15:14:10 GMT
- Title: Online Fair Allocation of Perishable Resources
- Authors: Siddhartha Banerjee, Chamsi Hssaine, Sean R. Sinclair,
- Abstract summary: We consider a practically motivated variant of the canonical online fair allocation problem.
A decision-maker has a budget of perishable resources to allocate over a fixed number of rounds.
The goal is to construct a sequence of allocations that is envy-free and efficient.
- Score: 1.4952056744888913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a practically motivated variant of the canonical online fair allocation problem: a decision-maker has a budget of perishable resources to allocate over a fixed number of rounds. Each round sees a random number of arrivals, and the decision-maker must commit to an allocation for these individuals before moving on to the next round. The goal is to construct a sequence of allocations that is envy-free and efficient. Our work makes two important contributions toward this problem: we first derive strong lower bounds on the optimal envy-efficiency trade-off that demonstrate that a decision-maker is fundamentally limited in what she can hope to achieve relative to the no-perishing setting; we then design an algorithm achieving these lower bounds which takes as input $(i)$ a prediction of the perishing order, and $(ii)$ a desired bound on envy. Given the remaining budget in each period, the algorithm uses forecasts of future demand and perishing to adaptively choose one of two carefully constructed guardrail quantities. We demonstrate our algorithm's strong numerical performance - and state-of-the-art, perishing-agnostic algorithms' inefficacy - on simulations calibrated to a real-world dataset.
Related papers
- Zero-Regret Performative Prediction Under Inequality Constraints [5.513958040574729]
This paper studies performative prediction under inequality constraints.
We develop a robust primal-dual framework that requires only approximate up to a certain accuracy.
We then propose an adaptive primal-dual algorithm for location families.
arXiv Detail & Related papers (2023-09-22T04:54:26Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
Existing primal-dual algorithms for constrained online learning problems rely on two fundamental assumptions.
We show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers.
We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions.
arXiv Detail & Related papers (2023-02-02T16:30:33Z) - Efficient Algorithms for Planning with Participation Constraints [74.74967476995572]
We consider the problem of planning with participation constraints introduced in [Zhang et al., 2022]
In this problem, a principal chooses actions in a decision process, resulting in separate utilities for the principal and the agent.
We provide the first-time exact algorithm for this problem for finite-horizon settings, where previously only an additive $varepsilon$-approximation was known.
arXiv Detail & Related papers (2022-05-16T15:47:41Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Online Allocation with Two-sided Resource Constraints [44.5635910908944]
We consider an online allocation problem subject to lower and upper resource constraints, where the requests arrive sequentially.
We propose a new algorithm that obtains $1-O(fracepsilonalpha-epsilon)$ -competitive ratio for the offline problems that know the entire requests ahead of time.
arXiv Detail & Related papers (2021-12-28T02:21:06Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Online Stochastic Optimization with Wasserstein Based Non-stationarity [12.91020811577007]
We consider a general online optimization problem with multiple budget constraints over a horizon of finite time periods.
The objective of the decision maker is to maximize the cumulative reward subject to the budget constraints.
This formulation captures a wide range of applications including online linear programming and network revenue management.
arXiv Detail & Related papers (2020-12-13T04:47:37Z) - The Best of Many Worlds: Dual Mirror Descent for Online Allocation
Problems [7.433931244705934]
We consider a data-driven setting in which the reward and resource consumption of each request are generated using an input model unknown to the decision maker.
We design general class of algorithms that attain good performance in various input models without knowing which type of input they are facing.
Our algorithms operate in the Lagrangian dual space: they maintain a dual multiplier for each resource that is updated using online mirror descent.
arXiv Detail & Related papers (2020-11-18T18:39:17Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Exploration in two-stage recommender systems [79.50534282841618]
Two-stage recommender systems are widely adopted in industry due to their scalability and maintainability.
A key challenge of this setup is that optimal performance of each stage in isolation does not imply optimal global performance.
We propose a method of synchronising the exploration strategies between the ranker and the nominators.
arXiv Detail & Related papers (2020-09-01T16:52:51Z) - Regularized Online Allocation Problems: Fairness and Beyond [7.433931244705934]
We introduce the emphregularized online allocation problem, a variant that includes a non-linear regularizer acting on the total resource consumption.
In this problem, requests repeatedly arrive over time and, for each request, a decision maker needs to take an action that generates a reward and consumes resources.
The objective is to simultaneously maximize additively separable rewards and the value of a non-separable regularizer subject to the resource constraints.
arXiv Detail & Related papers (2020-07-01T14:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.