GenS: Generalizable Neural Surface Reconstruction from Multi-View Images
- URL: http://arxiv.org/abs/2406.02495v1
- Date: Tue, 4 Jun 2024 17:13:10 GMT
- Title: GenS: Generalizable Neural Surface Reconstruction from Multi-View Images
- Authors: Rui Peng, Xiaodong Gu, Luyang Tang, Shihe Shen, Fanqi Yu, Ronggang Wang,
- Abstract summary: GenS is an end-to-end generalizable neural surface reconstruction model.
Our representation is more powerful, which can recover high-frequency details while maintaining global smoothness.
Experiments on popular benchmarks show that our model can generalize well to new scenes.
- Score: 20.184657468900852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining the signed distance function (SDF) and differentiable volume rendering has emerged as a powerful paradigm for surface reconstruction from multi-view images without 3D supervision. However, current methods are impeded by requiring long-time per-scene optimizations and cannot generalize to new scenes. In this paper, we present GenS, an end-to-end generalizable neural surface reconstruction model. Unlike coordinate-based methods that train a separate network for each scene, we construct a generalized multi-scale volume to directly encode all scenes. Compared with existing solutions, our representation is more powerful, which can recover high-frequency details while maintaining global smoothness. Meanwhile, we introduce a multi-scale feature-metric consistency to impose the multi-view consistency in a more discriminative multi-scale feature space, which is robust to the failures of the photometric consistency. And the learnable feature can be self-enhanced to continuously improve the matching accuracy and mitigate aggregation ambiguity. Furthermore, we design a view contrast loss to force the model to be robust to those regions covered by few viewpoints through distilling the geometric prior from dense input to sparse input. Extensive experiments on popular benchmarks show that our model can generalize well to new scenes and outperform existing state-of-the-art methods even those employing ground-truth depth supervision. Code is available at https://github.com/prstrive/GenS.
Related papers
- Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
We propose a novel method for pixel-level image-to-multi-view generation.
Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model.
Our model enables better pixel alignment across multi-view images.
arXiv Detail & Related papers (2024-08-26T04:56:41Z) - MultiDiff: Consistent Novel View Synthesis from a Single Image [60.04215655745264]
MultiDiff is a novel approach for consistent novel view synthesis of scenes from a single RGB image.
Our results demonstrate that MultiDiff outperforms state-of-the-art methods on the challenging, real-world datasets RealEstate10K and ScanNet.
arXiv Detail & Related papers (2024-06-26T17:53:51Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse
views [40.7986573030214]
We introduce SparseNeuS, a novel neural rendering based method for the task of surface reconstruction from multi-view images.
SparseNeuS can generalize to new scenes and work well with sparse images (as few as 2 or 3)
arXiv Detail & Related papers (2022-06-12T13:34:03Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - Weakly-Supervised Multi-Face 3D Reconstruction [45.864415499303405]
We propose an effective end-to-end framework for multi-face 3D reconstruction.
We employ the same global camera model for the reconstructed faces in each image, which makes it possible to recover the relative head positions and orientations in the 3D scene.
arXiv Detail & Related papers (2021-01-06T13:15:21Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.