Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems
- URL: http://arxiv.org/abs/2406.02598v1
- Date: Sat, 1 Jun 2024 16:18:20 GMT
- Title: Towards Learning Foundation Models for Heuristic Functions to Solve Pathfinding Problems
- Authors: Vedant Khandelwal, Amit Sheth, Forest Agostinelli,
- Abstract summary: Pathfinding problems are found in robotics, computational science, and natural sciences.
Traditional methods to solve these require training deep neural networks (DNNs) for each new problem domain.
This study introduces a novel foundation model, leveraging deep reinforcement learning to train functions that seamlessly adapt to new domains.
- Score: 12.990207889359402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pathfinding problems are found throughout robotics, computational science, and natural sciences. Traditional methods to solve these require training deep neural networks (DNNs) for each new problem domain, consuming substantial time and resources. This study introduces a novel foundation model, leveraging deep reinforcement learning to train heuristic functions that seamlessly adapt to new domains without further fine-tuning. Building upon DeepCubeA, we enhance the model by providing the heuristic function with the domain's state transition information, improving its adaptability. Utilizing a puzzle generator for the 15-puzzle action space variation domains, we demonstrate our model's ability to generalize and solve unseen domains. We achieve a strong correlation between learned and ground truth heuristic values across various domains, as evidenced by robust R-squared and Concordance Correlation Coefficient metrics. These results underscore the potential of foundation models to establish new standards in efficiency and adaptability for AI-driven solutions in complex pathfinding problems.
Related papers
- Re-visiting Reservoir Computing architectures optimized by Evolutionary
Algorithms [0.0]
Evolutionary Algorithms (EAs) have been applied to improve Neural Networks (NNs) architectures.
We provide a systematic brief survey about applications of EAs on the specific domain of the recurrent NNs named Reservoir Computing (RC)
arXiv Detail & Related papers (2022-11-11T14:50:54Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Polynomial-Spline Neural Networks with Exact Integrals [0.0]
We develop a novel neural network architecture that combines a mixture-of-experts model with free knot B1-spline basis functions.
Our architecture exhibits both $h$- and $p$- refinement for regression problems at the convergence rates expected from approximation theory.
We demonstrate the success of our network on a range of regression and variational problems that illustrate the consistency and exact integrability of our network architecture.
arXiv Detail & Related papers (2021-10-26T22:12:37Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Neural Supervised Domain Adaptation by Augmenting Pre-trained Models
with Random Units [14.183224769428843]
Neural Transfer Learning (TL) is becoming ubiquitous in Natural Language Processing (NLP)
In this paper, we show through interpretation methods that such scheme, despite its efficiency, is suffering from a main limitation.
We propose to augment the pre-trained model with normalised, weighted and randomly initialised units that foster a better adaptation while maintaining the valuable source knowledge.
arXiv Detail & Related papers (2021-06-09T09:29:11Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z) - Sequential Domain Adaptation through Elastic Weight Consolidation for
Sentiment Analysis [3.1473798197405944]
We propose a model-independent framework - Sequential Domain Adaptation (SDA)
Our experiments show that the proposed framework enables simple architectures such as CNNs to outperform complex state-of-the-art models in domain adaptation of sentiment analysis (SA)
In addition, we observe that the effectiveness of a harder first Anti-Curriculum ordering of source domains leads to maximum performance.
arXiv Detail & Related papers (2020-07-02T15:21:56Z) - Joint learning of variational representations and solvers for inverse
problems with partially-observed data [13.984814587222811]
In this paper, we design an end-to-end framework allowing to learn actual variational frameworks for inverse problems in a supervised setting.
The variational cost and the gradient-based solver are both stated as neural networks using automatic differentiation for the latter.
This leads to a data-driven discovery of variational models.
arXiv Detail & Related papers (2020-06-05T19:53:34Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.