Cyclic Sparse Training: Is it Enough?
- URL: http://arxiv.org/abs/2406.02773v2
- Date: Fri, 7 Jun 2024 06:10:04 GMT
- Title: Cyclic Sparse Training: Is it Enough?
- Authors: Advait Gadhikar, Sree Harsha Nelaturu, Rebekka Burkholz,
- Abstract summary: We propose SCULPT-ing, i.e., repeated cyclic training of any sparse mask followed by a single pruning step to couple the parameters and the mask.
This is able to match the performance of state-of-the-art iterative pruning methods in the high sparsity regime at reduced computational cost.
- Score: 17.02564269659367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of iterative pruning methods in achieving state-of-the-art sparse networks has largely been attributed to improved mask identification and an implicit regularization induced by pruning. We challenge this hypothesis and instead posit that their repeated cyclic training schedules enable improved optimization. To verify this, we show that pruning at initialization is significantly boosted by repeated cyclic training, even outperforming standard iterative pruning methods. The dominant mechanism how this is achieved, as we conjecture, can be attributed to a better exploration of the loss landscape leading to a lower training loss. However, at high sparsity, repeated cyclic training alone is not enough for competitive performance. A strong coupling between learnt parameter initialization and mask seems to be required. Standard methods obtain this coupling via expensive pruning-training iterations, starting from a dense network. To achieve this with sparse training instead, we propose SCULPT-ing, i.e., repeated cyclic training of any sparse mask followed by a single pruning step to couple the parameters and the mask, which is able to match the performance of state-of-the-art iterative pruning methods in the high sparsity regime at reduced computational cost.
Related papers
- Learning a Consensus Sub-Network with Polarization Regularization and
One Pass Training [3.2214522506924093]
Pruning schemes create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph.
We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks.
Our results on CIFAR-10 and CIFAR-100 suggest that our scheme can remove 50% of connections in deep networks with less than 1% reduction in classification accuracy.
arXiv Detail & Related papers (2023-02-17T09:37:17Z) - Training Your Sparse Neural Network Better with Any Mask [106.134361318518]
Pruning large neural networks to create high-quality, independently trainable sparse masks is desirable.
In this paper we demonstrate an alternative opportunity: one can customize the sparse training techniques to deviate from the default dense network training protocols.
Our new sparse training recipe is generally applicable to improving training from scratch with various sparse masks.
arXiv Detail & Related papers (2022-06-26T00:37:33Z) - The Unreasonable Effectiveness of Random Pruning: Return of the Most
Naive Baseline for Sparse Training [111.15069968583042]
Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training.
We empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent.
Our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning.
arXiv Detail & Related papers (2022-02-05T21:19:41Z) - Back to Basics: Efficient Network Compression via IMP [22.586474627159287]
Iterative Magnitude Pruning (IMP) is one of the most established approaches for network pruning.
IMP is often argued that it reaches suboptimal states by not incorporating sparsification into the training phase.
We find that IMP with SLR for retraining can outperform state-of-the-art pruning-during-training approaches.
arXiv Detail & Related papers (2021-11-01T11:23:44Z) - When to Prune? A Policy towards Early Structural Pruning [27.91996628143805]
We propose a policy that prunes as early as possible during training without hurting performance.
Our method yields $1.4%$ top-1 accuracy boost over state-of-the-art pruning counterparts, cuts down training cost on GPU by $2.4times$.
arXiv Detail & Related papers (2021-10-22T18:39:22Z) - Sparse Training via Boosting Pruning Plasticity with Neuroregeneration [79.78184026678659]
We study the effect of pruning throughout training from the perspective of pruning plasticity.
We design a novel gradual magnitude pruning (GMP) method, named gradual pruning with zero-cost neuroregeneration (GraNet) and its dynamic sparse training (DST) variant (GraNet-ST)
Perhaps most impressively, the latter for the first time boosts the sparse-to-sparse training performance over various dense-to-sparse methods by a large margin with ResNet-50 on ImageNet.
arXiv Detail & Related papers (2021-06-19T02:09:25Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Towards Optimal Filter Pruning with Balanced Performance and Pruning
Speed [17.115185960327665]
We propose a balanced filter pruning method for both performance and pruning speed.
Our method is able to prune a layer with approximate layer-wise optimal pruning rate at preset loss variation.
The proposed pruning method is widely applicable to common architectures and does not involve any additional training except the final fine-tuning.
arXiv Detail & Related papers (2020-10-14T06:17:09Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
A common limitation of most existing pruning techniques is that they require pre-training of the network at least once before pruning.
We propose STAMP, which task-adaptively prunes a network pretrained on a large reference dataset by generating a pruning mask on it as a function of the target dataset.
We validate STAMP against recent advanced pruning methods on benchmark datasets.
arXiv Detail & Related papers (2020-06-22T10:57:43Z) - Progressive Skeletonization: Trimming more fat from a network at
initialization [76.11947969140608]
We propose an objective to find a skeletonized network with maximum connection sensitivity.
We then propose two approximate procedures to maximize our objective.
Our approach provides remarkably improved performance on higher pruning levels.
arXiv Detail & Related papers (2020-06-16T11:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.