Distilling Aggregated Knowledge for Weakly-Supervised Video Anomaly Detection
- URL: http://arxiv.org/abs/2406.02831v1
- Date: Wed, 5 Jun 2024 00:44:42 GMT
- Title: Distilling Aggregated Knowledge for Weakly-Supervised Video Anomaly Detection
- Authors: Jash Dalvi, Ali Dabouei, Gunjan Dhanuka, Min Xu,
- Abstract summary: Video anomaly detection aims to develop automated models capable of identifying abnormal events in surveillance videos.
We show that distilling knowledge from aggregated representations into a relatively simple model achieves state-of-the-art performance.
- Score: 11.250490586786878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection aims to develop automated models capable of identifying abnormal events in surveillance videos. The benchmark setup for this task is extremely challenging due to: i) the limited size of the training sets, ii) weak supervision provided in terms of video-level labels, and iii) intrinsic class imbalance induced by the scarcity of abnormal events. In this work, we show that distilling knowledge from aggregated representations of multiple backbones into a relatively simple model achieves state-of-the-art performance. In particular, we develop a bi-level distillation approach along with a novel disentangled cross-attention-based feature aggregation network. Our proposed approach, DAKD (Distilling Aggregated Knowledge with Disentangled Attention), demonstrates superior performance compared to existing methods across multiple benchmark datasets. Notably, we achieve significant improvements of 1.36%, 0.78%, and 7.02% on the UCF-Crime, ShanghaiTech, and XD-Violence datasets, respectively.
Related papers
- MissionGNN: Hierarchical Multimodal GNN-based Weakly Supervised Video Anomaly Recognition with Mission-Specific Knowledge Graph Generation [5.0923114224599555]
This paper introduces a novel hierarchical graph neural network (GNN) based model MissionGNN.
Our approach circumvents the limitations of previous methods by avoiding heavy gradient computations on large multimodal models.
Our model provides a practical and efficient solution for real-time video analysis without the constraints of previous segmentation-based or multimodal approaches.
arXiv Detail & Related papers (2024-06-27T01:09:07Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
We focus on semi-supervised continual learning (SSCL), where the model progressively learns from partially labeled data with unknown categories.
We propose a novel approach called Dynamic Sub-Graph Distillation (DSGD) for semi-supervised continual learning.
arXiv Detail & Related papers (2023-12-27T04:40:12Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Learning to Adapt to Unseen Abnormal Activities under Weak Supervision [43.40900198498228]
We present a meta-learning framework for weakly supervised anomaly detection in videos.
Our framework learns to adapt to unseen types of abnormal activities effectively when only video-level annotations of binary labels are available.
arXiv Detail & Related papers (2022-03-25T12:15:44Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - MIST: Multiple Instance Self-Training Framework for Video Anomaly
Detection [76.80153360498797]
We develop a multiple instance self-training framework (MIST) to efficiently refine task-specific discriminative representations.
MIST is composed of 1) a multiple instance pseudo label generator, which adapts a sparse continuous sampling strategy to produce more reliable clip-level pseudo labels, and 2) a self-guided attention boosted feature encoder.
Our method performs comparably to or even better than existing supervised and weakly supervised methods, specifically obtaining a frame-level AUC 94.83% on ShanghaiTech.
arXiv Detail & Related papers (2021-04-04T15:47:14Z) - CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy
Suppression for Anomalous Event Detection [20.368114998124295]
We propose a weakly supervised anomaly detection method which has manifold contributions.
The proposed method obtains83.03% and 89.67% frame-level AUC performance on the UCF Crime and ShanghaiTech datasets respectively.
arXiv Detail & Related papers (2020-11-24T13:27:40Z) - Anomaly Detection in Video via Self-Supervised and Multi-Task Learning [113.81927544121625]
Anomaly detection in video is a challenging computer vision problem.
In this paper, we approach anomalous event detection in video through self-supervised and multi-task learning at the object level.
arXiv Detail & Related papers (2020-11-15T10:21:28Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.