Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
- URL: http://arxiv.org/abs/2406.02962v1
- Date: Wed, 5 Jun 2024 05:35:59 GMT
- Title: Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
- Authors: Qiang Sun, Yuanyi Luo, Wenxiao Zhang, Sirui Li, Jichunyang Li, Kai Niu, Xiangrui Kong, Wei Liu,
- Abstract summary: 80% of enterprise data reside in unstructured files, stored in data lakes that accommodate heterogeneous formats.
We introduce Docs2KG, a novel framework designed to extract multimodal information from diverse and heterogeneous documents.
Docs2KG generates a unified knowledge graph that represents the extracted key information.
- Score: 11.959445364035734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even for a conservative estimate, 80% of enterprise data reside in unstructured files, stored in data lakes that accommodate heterogeneous formats. Classical search engines can no longer meet information seeking needs, especially when the task is to browse and explore for insight formulation. In other words, there are no obvious search keywords to use. Knowledge graphs, due to their natural visual appeals that reduce the human cognitive load, become the winning candidate for heterogeneous data integration and knowledge representation. In this paper, we introduce Docs2KG, a novel framework designed to extract multimodal information from diverse and heterogeneous unstructured documents, including emails, web pages, PDF files, and Excel files. Dynamically generates a unified knowledge graph that represents the extracted key information, Docs2KG enables efficient querying and exploration of document data lakes. Unlike existing approaches that focus on domain-specific data sources or pre-designed schemas, Docs2KG offers a flexible and extensible solution that can adapt to various document structures and content types. The proposed framework unifies data processing supporting a multitude of downstream tasks with improved domain interpretability. Docs2KG is publicly accessible at https://docs2kg.ai4wa.com, and a demonstration video is available at https://docs2kg.ai4wa.com/Video.
Related papers
- Multi-Field Adaptive Retrieval [39.38972160512916]
We introduce Multi-Field Adaptive Retrieval (MFAR), a flexible framework that accommodates any number of document indices on structured data.
Our framework consists of two main steps: (1) the decomposition of an existing document into fields, each indexed independently through dense and lexical methods, and (2) learning a model which adaptively predicts the importance of a field by conditioning on the document query.
We find that our approach allows for the optimized use of dense versus lexical representations across field types, significantly improves in document ranking over a number of existing retrievers, and achieves state-of-the-art performance for multi-field structured
arXiv Detail & Related papers (2024-10-26T03:07:22Z) - DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models [63.466265039007816]
We present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community.
We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
arXiv Detail & Related papers (2024-06-17T15:13:52Z) - BuDDIE: A Business Document Dataset for Multi-task Information Extraction [18.440587946049845]
BuDDIE is the first multi-task dataset of 1,665 real-world business documents.
Our dataset consists of publicly available business entity documents from US state government websites.
arXiv Detail & Related papers (2024-04-05T10:26:42Z) - PDFTriage: Question Answering over Long, Structured Documents [60.96667912964659]
Representing structured documents as plain text is incongruous with the user's mental model of these documents with rich structure.
We propose PDFTriage that enables models to retrieve the context based on either structure or content.
Our benchmark dataset consists of 900+ human-generated questions over 80 structured documents.
arXiv Detail & Related papers (2023-09-16T04:29:05Z) - Cross-Modal Entity Matching for Visually Rich Documents [4.8119678510491815]
Visually rich documents utilize visual cues to augment their semantics.
Existing works that enable structured querying on these documents do not take this into account.
We propose Juno -- a cross-modal entity matching framework to address this limitation.
arXiv Detail & Related papers (2023-03-01T18:26:14Z) - Doc2Bot: Accessing Heterogeneous Documents via Conversational Bots [103.54897676954091]
Doc2Bot is a dataset for building machines that help users seek information via conversations.
Our dataset contains over 100,000 turns based on Chinese documents from five domains.
arXiv Detail & Related papers (2022-10-20T07:33:05Z) - Doc2Graph: a Task Agnostic Document Understanding Framework based on
Graph Neural Networks [0.965964228590342]
We propose Doc2Graph, a task-agnostic document understanding framework based on a GNN model.
We evaluate our approach on two challenging datasets for key information extraction in form understanding, invoice layout analysis and table detection.
arXiv Detail & Related papers (2022-08-23T19:48:10Z) - Doc-GCN: Heterogeneous Graph Convolutional Networks for Document Layout
Analysis [4.920817773181236]
Our Doc-GCN presents an effective way to harmonize and integrate heterogeneous aspects for Document Layout Analysis.
We first construct graphs to explicitly describe four main aspects, including syntactic, semantic, density, and appearance/visual information.
We apply graph convolutional networks for representing each aspect of information and use pooling to integrate them.
arXiv Detail & Related papers (2022-08-22T07:22:05Z) - DocBank: A Benchmark Dataset for Document Layout Analysis [114.81155155508083]
We present textbfDocBank, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis.
Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents.
arXiv Detail & Related papers (2020-06-01T16:04:30Z) - SciREX: A Challenge Dataset for Document-Level Information Extraction [56.83748634747753]
It is challenging to create a large-scale information extraction dataset at the document level.
We introduce SciREX, a document level IE dataset that encompasses multiple IE tasks.
We develop a neural model as a strong baseline that extends previous state-of-the-art IE models to document-level IE.
arXiv Detail & Related papers (2020-05-01T17:30:10Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.