Learning Semantic Traversability with Egocentric Video and Automated Annotation Strategy
- URL: http://arxiv.org/abs/2406.02989v2
- Date: Sat, 28 Sep 2024 16:31:58 GMT
- Title: Learning Semantic Traversability with Egocentric Video and Automated Annotation Strategy
- Authors: Yunho Kim, Jeong Hyun Lee, Choongin Lee, Juhyeok Mun, Donghoon Youm, Jeongsoo Park, Jemin Hwangbo,
- Abstract summary: A robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene.
This reasoning ability is based on semantic traversability, which is frequently achieved using semantic segmentation models fine-tuned on the testing domain.
We present an effective methodology for training a semantic traversability estimator using egocentric videos and an automated annotation process.
- Score: 3.713586225621126
- License:
- Abstract: For reliable autonomous robot navigation in urban settings, the robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene. This reasoning ability is based on semantic traversability, which is frequently achieved using semantic segmentation models fine-tuned on the testing domain. This fine-tuning process often involves manual data collection with the target robot and annotation by human labelers which is prohibitively expensive and unscalable. In this work, we present an effective methodology for training a semantic traversability estimator using egocentric videos and an automated annotation process. Egocentric videos are collected from a camera mounted on a pedestrian's chest. The dataset for training the semantic traversability estimator is then automatically generated by extracting semantically traversable regions in each video frame using a recent foundation model in image segmentation and its prompting technique. Extensive experiments with videos taken across several countries and cities, covering diverse urban scenarios, demonstrate the high scalability and generalizability of the proposed annotation method. Furthermore, performance analysis and real-world deployment for autonomous robot navigation showcase that the trained semantic traversability estimator is highly accurate, able to handle diverse camera viewpoints, computationally light, and real-world applicable. The summary video is available at https://youtu.be/EUVoH-wA-lA.
Related papers
- Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment.
We have implemented this representation into a full-fledged navigation approach called SkillTron.
The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation.
arXiv Detail & Related papers (2023-11-07T16:30:12Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
We develop an approach for learning visual affordances for guiding robot exploration.
We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE.
We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.
arXiv Detail & Related papers (2023-05-28T17:53:09Z) - Object Goal Navigation Based on Semantics and RGB Ego View [9.702784248870522]
This paper presents an architecture and methodology to empower a service robot to navigate an indoor environment with semantic decision making, given RGB ego view.
The robot navigates based on GeoSem map - a relational combination of geometric and semantic map.
The presented approach was found to outperform human users in gamified evaluations with respect to average completion time.
arXiv Detail & Related papers (2022-10-20T19:23:08Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
We propose a SurroundDepth method to incorporate the information from multiple surrounding views to predict depth maps across cameras.
Specifically, we employ a joint network to process all the surrounding views and propose a cross-view transformer to effectively fuse the information from multiple views.
In experiments, our method achieves the state-of-the-art performance on the challenging multi-camera depth estimation datasets.
arXiv Detail & Related papers (2022-04-07T17:58:47Z) - Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning
to Segment Driveability in Egocentric Images [25.350677396144075]
This work tackles scene understanding for outdoor robotic navigation, solely relying on images captured by an on-board camera.
We segment egocentric images directly in terms of how a robot can navigate in them, and tailor the learning problem to an autonomous navigation task.
We present a generic and scalable affordance-based definition consisting of 3 driveability levels which can be applied to arbitrary scenes.
arXiv Detail & Related papers (2021-09-15T12:25:56Z) - Batteries, camera, action! Learning a semantic control space for
expressive robot cinematography [15.895161373307378]
We develop a data-driven framework that enables editing of complex camera positioning parameters in a semantic space.
First, we generate a database of video clips with a diverse range of shots in a photo-realistic simulator.
We use hundreds of participants in a crowd-sourcing framework to obtain scores for a set of semantic descriptors for each clip.
arXiv Detail & Related papers (2020-11-19T21:56:53Z) - Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics [33.30312206728974]
We describe a synthesis pipeline capable of producing training data for cluttered scene perception tasks.
Our approach arranges object meshes in physically realistic, dense scenes using physics simulation.
Our pipeline can be run online during training of a deep neural network.
arXiv Detail & Related papers (2020-05-12T10:11:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.