Population Transformer: Learning Population-level Representations of Neural Activity
- URL: http://arxiv.org/abs/2406.03044v4
- Date: Fri, 28 Mar 2025 06:43:28 GMT
- Title: Population Transformer: Learning Population-level Representations of Neural Activity
- Authors: Geeling Chau, Christopher Wang, Sabera Talukder, Vighnesh Subramaniam, Saraswati Soedarmadji, Yisong Yue, Boris Katz, Andrei Barbu,
- Abstract summary: We present a self-supervised framework that learns population-level codes for arbitrary ensembles of neural recordings at scale.<n>We address key challenges in scaling models with neural time-series data, namely, sparse and variable electrode distribution across subjects and datasets.<n>We release our code as well as a pretrained PopT to enable off-the-shelf improvements in multi-channel intracranial data decoding and interpretability.
- Score: 29.18788640048468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a self-supervised framework that learns population-level codes for arbitrary ensembles of neural recordings at scale. We address key challenges in scaling models with neural time-series data, namely, sparse and variable electrode distribution across subjects and datasets. The Population Transformer (PopT) stacks on top of pretrained temporal embeddings and enhances downstream decoding by enabling learned aggregation of multiple spatially-sparse data channels. The pretrained PopT lowers the amount of data required for downstream decoding experiments, while increasing accuracy, even on held-out subjects and tasks. Compared to end-to-end methods, this approach is computationally lightweight, while achieving similar or better decoding performance. We further show how our framework is generalizable to multiple time-series embeddings and neural data modalities. Beyond decoding, we interpret the pretrained and fine-tuned PopT models to show how they can be used to extract neuroscience insights from large amounts of data. We release our code as well as a pretrained PopT to enable off-the-shelf improvements in multi-channel intracranial data decoding and interpretability. Code is available at https://github.com/czlwang/PopulationTransformer.
Related papers
- Sampling weights of deep neural networks [1.2370077627846041]
We introduce a probability distribution, combined with an efficient sampling algorithm, for weights and biases of fully-connected neural networks.
In a supervised learning context, no iterative optimization or gradient computations of internal network parameters are needed.
We prove that sampled networks are universal approximators.
arXiv Detail & Related papers (2023-06-29T10:13:36Z) - Diffused Redundancy in Pre-trained Representations [98.55546694886819]
We take a closer look at how features are encoded in pre-trained representations.
We find that learned representations in a given layer exhibit a degree of diffuse redundancy.
Our findings shed light on the nature of representations learned by pre-trained deep neural networks.
arXiv Detail & Related papers (2023-05-31T21:00:50Z) - DCLP: Neural Architecture Predictor with Curriculum Contrastive Learning [5.2319020651074215]
We propose a Curricumum-guided Contrastive Learning framework for neural Predictor (DCLP)
Our method simplifies the contrastive task by designing a novel curriculum to enhance the stability of unlabeled training data distribution.
We experimentally demonstrate that DCLP has high accuracy and efficiency compared with existing predictors.
arXiv Detail & Related papers (2023-02-25T08:16:21Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
Cross entropy loss can easily lead us to find models which demonstrate severe overfitting behavior.
In this paper, we prove that the existing cross entropy loss minimization for training DNN classifiers essentially learns the conditional entropy of the underlying data distribution.
We propose a mutual information learning framework where we train DNN classifiers via learning the mutual information between the label and input.
arXiv Detail & Related papers (2022-10-03T15:09:19Z) - Discrete Key-Value Bottleneck [95.61236311369821]
Deep neural networks perform well on classification tasks where data streams are i.i.d. and labeled data is abundant.
One powerful approach that has addressed this challenge involves pre-training of large encoders on volumes of readily available data, followed by task-specific tuning.
Given a new task, however, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks.
We propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable key-value codes.
arXiv Detail & Related papers (2022-07-22T17:52:30Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
We show that upstream data gives tabular neural networks a decisive advantage over GBDT models.
We propose a realistic medical diagnosis benchmark for tabular transfer learning.
We propose a pseudo-feature method for cases where the upstream and downstream feature sets differ.
arXiv Detail & Related papers (2022-06-30T14:24:32Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Variational Sparse Coding with Learned Thresholding [6.737133300781134]
We propose a new approach to variational sparse coding that allows us to learn sparse distributions by thresholding samples.
We first evaluate and analyze our method by training a linear generator, showing that it has superior performance, statistical efficiency, and gradient estimation.
arXiv Detail & Related papers (2022-05-07T14:49:50Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Reasoning-Modulated Representations [85.08205744191078]
We study a common setting where our task is not purely opaque.
Our approach paves the way for a new class of data-efficient representation learning.
arXiv Detail & Related papers (2021-07-19T13:57:13Z) - A Tutorial on the Mathematical Model of Single Cell Variational
Inference [0.0]
This tutorial will introduce the the mathematical model of the single cell variational inference (scVI)
It was written for beginners in the simple and intuitive way with many deduction details to encourage more researchers into this field.
arXiv Detail & Related papers (2021-01-03T16:02:36Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z) - A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation [7.141405427125369]
We propose a generic semi-supervised learning framework for image segmentation based on a deep convolutional neural network (DCNN)
Our method is able to significantly improve beyond fully supervised model learning by incorporating unlabeled data.
arXiv Detail & Related papers (2020-04-16T23:41:50Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.