RadBARTsum: Domain Specific Adaption of Denoising Sequence-to-Sequence Models for Abstractive Radiology Report Summarization
- URL: http://arxiv.org/abs/2406.03062v1
- Date: Wed, 5 Jun 2024 08:43:11 GMT
- Title: RadBARTsum: Domain Specific Adaption of Denoising Sequence-to-Sequence Models for Abstractive Radiology Report Summarization
- Authors: Jinge Wu, Abul Hasan, Honghan Wu,
- Abstract summary: This study proposes RadBARTsum, a domain-specific and facilitated adaptation of the BART model for abstractive radiology report summarization.
The approach involves two main steps: 1) re-training the BART model on a large corpus of radiology reports using a novel entity masking strategy to improve biomedical domain knowledge learning, and 2) fine-tuning the model for the summarization task using the Findings and Background sections to predict the Impression section.
- Score: 1.8450534779202723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiology report summarization is a crucial task that can help doctors quickly identify clinically significant findings without the need to review detailed sections of reports. This study proposes RadBARTsum, a domain-specific and ontology facilitated adaptation of the BART model for abstractive radiology report summarization. The approach involves two main steps: 1) re-training the BART model on a large corpus of radiology reports using a novel entity masking strategy to improving biomedical domain knowledge learning, and 2) fine-tuning the model for the summarization task using the Findings and Background sections to predict the Impression section. Experiments are conducted using different masking strategies. Results show that the re-training process with domain knowledge facilitated masking improves performances consistently across various settings. This work contributes a domain-specific generative language model for radiology report summarization and a method for utilising medical knowledge to realise entity masking language model. The proposed approach demonstrates a promising direction of enhancing the efficiency of language models by deepening its understanding of clinical knowledge in radiology reports.
Related papers
- TRRG: Towards Truthful Radiology Report Generation With Cross-modal Disease Clue Enhanced Large Language Model [22.305034251561835]
We propose a truthful radiology report generation framework, namely TRRG, based on stage-wise training for cross-modal disease clue injection into large language models.
Our proposed framework achieves state-of-the-art performance in radiology report generation on datasets such as IU-Xray and MIMIC-CXR.
arXiv Detail & Related papers (2024-08-22T05:52:27Z) - Enhancing the vision-language foundation model with key semantic knowledge-emphasized report refinement [9.347971487478038]
This paper develops a novel vision-language representation learning framework by proposing a key semantic knowledge-emphasized report refinement method.
Our framework surpasses seven state-of-the-art methods in both fine-tuning and zero-shot settings.
arXiv Detail & Related papers (2024-01-21T07:57:04Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning.
Quantitative evaluations using ROUGE metrics on the MIMIC-CXR and OpenI datasets demonstrate that Radiology-Llama2 achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-08-29T17:44:28Z) - MedKLIP: Medical Knowledge Enhanced Language-Image Pre-Training in
Radiology [40.52487429030841]
We consider enhancing medical visual-language pre-training with domain-specific knowledge, by exploiting the paired image-text reports from the radiological daily practice.
First, unlike existing works that directly process the raw reports, we adopt a novel triplet extraction module to extract the medical-related information.
Second, we propose a novel triplet encoding module with entity translation by querying a knowledge base, to exploit the rich domain knowledge in medical field.
Third, we propose to use a Transformer-based fusion model for spatially aligning the entity description with visual signals at the image patch level, enabling the ability for medical diagnosis
arXiv Detail & Related papers (2023-01-05T18:55:09Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Differentiable Multi-Agent Actor-Critic for Multi-Step Radiology Report
Summarization [5.234281904315526]
The IMPRESSIONS section of a radiology report is a summary of the radiologist's reasoning and conclusions.
Prior research on radiology report summarization has focused on single-step end-to-end models.
We propose a two-step approach: extractive summarization followed by abstractive summarization.
arXiv Detail & Related papers (2022-03-15T21:18:09Z) - Radiology Report Generation with a Learned Knowledge Base and
Multi-modal Alignment [27.111857943935725]
We present an automatic, multi-modal approach for report generation from chest x-ray.
Our approach features two distinct modules: (i) Learned knowledge base and (ii) Multi-modal alignment.
With the aid of both modules, our approach clearly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-12-30T10:43:56Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
Report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice.
Recent work has shown that deep learning models can successfully caption natural images.
We propose variational topic inference for automatic report generation.
arXiv Detail & Related papers (2021-07-15T13:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.