"Give Me an Example Like This": Episodic Active Reinforcement Learning from Demonstrations
- URL: http://arxiv.org/abs/2406.03069v3
- Date: Wed, 02 Oct 2024 20:03:52 GMT
- Title: "Give Me an Example Like This": Episodic Active Reinforcement Learning from Demonstrations
- Authors: Muhan Hou, Koen Hindriks, A. E. Eiben, Kim Baraka,
- Abstract summary: Methods like Reinforcement Learning from Expert Demonstrations (RLED) introduce external expert demonstrations to facilitate agent exploration during the learning process.
How to select the best set of human demonstrations that is most beneficial for learning becomes a major concern.
This paper presents EARLY, an algorithm that enables a learning agent to generate optimized queries of expert demonstrations in a trajectory-based feature space.
- Score: 3.637365301757111
- License:
- Abstract: Reinforcement Learning (RL) has achieved great success in sequential decision-making problems, but often at the cost of a large number of agent-environment interactions. To improve sample efficiency, methods like Reinforcement Learning from Expert Demonstrations (RLED) introduce external expert demonstrations to facilitate agent exploration during the learning process. In practice, these demonstrations, which are often collected from human users, are costly and hence often constrained to a limited amount. How to select the best set of human demonstrations that is most beneficial for learning therefore becomes a major concern. This paper presents EARLY (Episodic Active Learning from demonstration querY), an algorithm that enables a learning agent to generate optimized queries of expert demonstrations in a trajectory-based feature space. Based on a trajectory-level estimate of uncertainty in the agent's current policy, EARLY determines the optimized timing and content for feature-based queries. By querying episodic demonstrations as opposed to isolated state-action pairs, EARLY improves the human teaching experience and achieves better learning performance. We validate the effectiveness of our method in three simulated navigation tasks of increasing difficulty. The results show that our method is able to achieve expert-level performance for all three tasks with convergence over 30\% faster than other baseline methods when demonstrations are generated by simulated oracle policies. The results of a follow-up pilot user study (N=18) further validate that our method can still maintain a significantly better convergence in the case of human expert demonstrators while achieving a better user experience in perceived task load and consuming significantly less human time.
Related papers
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Sample-efficient Adversarial Imitation Learning [45.400080101596956]
We propose a self-supervised representation-based adversarial imitation learning method to learn state and action representations.
We show a 39% relative improvement over existing adversarial imitation learning methods on MuJoCo in a setting limited to 100 expert state-action pairs.
arXiv Detail & Related papers (2023-03-14T12:36:01Z) - Improving Learning from Demonstrations by Learning from Experience [4.605233477425785]
We propose a new algorithm named TD3fG that can smoothly transition from learning from experts to learning from experience.
Our algorithm achieves good performance in the MUJOCO environment with limited and sub-optimal demonstrations.
arXiv Detail & Related papers (2021-11-16T00:40:31Z) - Demonstration-Guided Reinforcement Learning with Learned Skills [23.376115889936628]
Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors.
In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL.
We propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations.
arXiv Detail & Related papers (2021-07-21T17:59:34Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
We propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations.
Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations.
arXiv Detail & Related papers (2020-06-14T06:03:06Z) - Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations [78.94386823185724]
Imitation learning learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations.
In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive.
We propose Self-Adaptive Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations.
arXiv Detail & Related papers (2020-04-01T15:57:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.