Inferring the time-varying coupling of dynamical systems with temporal convolutional autoencoders
- URL: http://arxiv.org/abs/2406.03212v1
- Date: Wed, 5 Jun 2024 12:51:20 GMT
- Title: Inferring the time-varying coupling of dynamical systems with temporal convolutional autoencoders
- Authors: Josuan Calderon, Gordon J. Berman,
- Abstract summary: We introduce Temporal Autoencoders for Causal Inference (TACI)
TACI combines a new surrogate data metric for assessing causal interactions with a novel two-headed machine learning architecture.
We demonstrate TACI's ability to accurately quantify dynamic causal interactions across a variety of systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most approaches for assessing causality in complex dynamical systems fail when the interactions between variables are inherently non-linear and non-stationary. Here we introduce Temporal Autoencoders for Causal Inference (TACI), a methodology that combines a new surrogate data metric for assessing causal interactions with a novel two-headed machine learning architecture to identify and measure the direction and strength of time-varying causal interactions. Through tests on both synthetic and real-world datasets, we demonstrate TACI's ability to accurately quantify dynamic causal interactions across a variety of systems. Our findings display the method's effectiveness compared to existing approaches and also highlight our approach's potential to build a deeper understanding of the mechanisms that underlie time-varying interactions in physical and biological systems.
Related papers
- Online Multi-modal Root Cause Analysis [61.94987309148539]
Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems.
Existing online RCA methods handle only single-modal data overlooking, complex interactions in multi-modal systems.
We introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization.
arXiv Detail & Related papers (2024-10-13T21:47:36Z) - LINOCS: Lookahead Inference of Networked Operators for Continuous Stability [4.508868068781057]
We introduce Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS)
LINOCS is a robust learning procedure for identifying hidden dynamical interactions in noisy time-series data.
We demonstrate LINOCS' ability to recover the ground truth dynamical operators underlying synthetic time-series data.
arXiv Detail & Related papers (2024-04-28T18:16:58Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
We propose a novel probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods.
We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types.
Overall the proposed model is data-efficient and generalizable to large systems when trained on smaller ones.
arXiv Detail & Related papers (2023-04-30T19:45:04Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Inference of time-ordered multibody interactions [0.8057006406834466]
We introduce time-ordered multibody interactions to describe complex systems manifesting temporal as well as multibody dependencies.
We present an algorithm to extract those interactions from data capturing the system-level dynamics of node states.
We experimentally validate the robustness of our algorithm against statistical errors and its efficiency at inferring parsimonious interaction ensembles.
arXiv Detail & Related papers (2021-11-29T15:41:06Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Divide and Rule: Recurrent Partitioned Network for Dynamic Processes [25.855428321990328]
Many dynamic processes are involved with interacting variables, from physical systems to sociological analysis.
Our goal is to represent a system with a part-whole hierarchy and discover the implied dependencies among intra-system variables.
The proposed architecture consists of (i) a perceptive module that extracts a hierarchical and temporally consistent representation of the observation at multiple levels, (ii) a deductive module for determining the relational connection between neurons at each level, and (iii) a statistical module that can predict the future by conditioning on the temporal distributional estimation.
arXiv Detail & Related papers (2021-06-01T06:45:56Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Neural Relational Inference with Efficient Message Passing Mechanisms [10.329082213561785]
This paper introduces efficient message passing mechanisms to the graph neural networks with structural prior knowledge to address these problems.
A relation interaction mechanism is proposed to capture the coexistence of all relations and atemporal message passing mechanism is proposed to use historical information to alleviate error accumulation.
arXiv Detail & Related papers (2021-01-23T11:27:31Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.