Searching Priors Makes Text-to-Video Synthesis Better
- URL: http://arxiv.org/abs/2406.03215v1
- Date: Wed, 5 Jun 2024 12:53:28 GMT
- Title: Searching Priors Makes Text-to-Video Synthesis Better
- Authors: Haoran Cheng, Liang Peng, Linxuan Xia, Yuepeng Hu, Hengjia Li, Qinglin Lu, Xiaofei He, Boxi Wu,
- Abstract summary: We reformulate the typical text-to-video (T2V) generation process as a search-based generation pipeline.
Instead of scaling up the model training, we employ existing videos as the motion prior database.
- Score: 16.314105189868588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant advancements in video diffusion models have brought substantial progress to the field of text-to-video (T2V) synthesis. However, existing T2V synthesis model struggle to accurately generate complex motion dynamics, leading to a reduction in video realism. One possible solution is to collect massive data and train the model on it, but this would be extremely expensive. To alleviate this problem, in this paper, we reformulate the typical T2V generation process as a search-based generation pipeline. Instead of scaling up the model training, we employ existing videos as the motion prior database. Specifically, we divide T2V generation process into two steps: (i) For a given prompt input, we search existing text-video datasets to find videos with text labels that closely match the prompt motions. We propose a tailored search algorithm that emphasizes object motion features. (ii) Retrieved videos are processed and distilled into motion priors to fine-tune a pre-trained base T2V model, followed by generating desired videos using input prompt. By utilizing the priors gleaned from the searched videos, we enhance the realism of the generated videos' motion. All operations can be finished on a single NVIDIA RTX 4090 GPU. We validate our method against state-of-the-art T2V models across diverse prompt inputs. The code will be public.
Related papers
- xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - AID: Adapting Image2Video Diffusion Models for Instruction-guided Video Prediction [88.70116693750452]
Text-guided video prediction (TVP) involves predicting the motion of future frames from the initial frame according to an instruction.
Previous TVP methods make significant breakthroughs by adapting Stable Diffusion for this task.
We introduce the Multi-Modal Large Language Model (MLLM) to predict future video states based on initial frames and text instructions.
arXiv Detail & Related papers (2024-06-10T17:02:08Z) - A Recipe for Scaling up Text-to-Video Generation with Text-free Videos [72.59262815400928]
Diffusion-based text-to-video generation has witnessed impressive progress in the past year yet still falls behind text-to-image generation.
We come up with a novel text-to-video generation framework, termed TF-T2V, which can directly learn with text-free videos.
arXiv Detail & Related papers (2023-12-25T16:37:39Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
We present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 816 videos on a single GPU.
Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation.
To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers.
arXiv Detail & Related papers (2023-10-16T19:03:19Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Video is a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps.
We propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process.
Our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation.
arXiv Detail & Related papers (2023-05-23T09:03:19Z) - Tune-A-Video: One-Shot Tuning of Image Diffusion Models for
Text-to-Video Generation [31.882356164068753]
To reproduce the success of text-to-image (T2I) generation, recent works in text-to-video (T2V) generation employ massive dataset for dataset for T2V generation.
We propose Tune-A-Video is capable of producing temporally-coherent videos over various applications.
arXiv Detail & Related papers (2022-12-22T09:43:36Z) - Make-A-Video: Text-to-Video Generation without Text-Video Data [69.20996352229422]
Make-A-Video is an approach for translating the tremendous recent progress in Text-to-Image (T2I) generation to Text-to-Video (T2V)
We design a simple yet effective way to build on T2I models with novel and effective spatial-temporal modules.
In all aspects, spatial and temporal resolution, faithfulness to text, and quality, Make-A-Video sets the new state-of-the-art in text-to-video generation.
arXiv Detail & Related papers (2022-09-29T13:59:46Z) - VIOLET : End-to-End Video-Language Transformers with Masked Visual-token
Modeling [88.30109041658618]
A great challenge in video-language (VidL) modeling lies in the disconnection between fixed video representations extracted from image/video understanding models and downstream VidL data.
We present VIOLET, a fully end-to-end VIdeO-LanguagE Transformer, which adopts a video transformer to explicitly model the temporal dynamics of video inputs.
arXiv Detail & Related papers (2021-11-24T18:31:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.