Enhancing Repository-Level Code Generation with Integrated Contextual Information
- URL: http://arxiv.org/abs/2406.03283v1
- Date: Wed, 5 Jun 2024 13:56:42 GMT
- Title: Enhancing Repository-Level Code Generation with Integrated Contextual Information
- Authors: Zhiyuan Pan, Xing Hu, Xin Xia, Xiaohu Yang,
- Abstract summary: CatCoder is a novel code generation framework designed for statically typed programming languages.
CatCoder enhances repository-level code generation by integrating relevant code and type context.
Results show that CatCoder outperforms the RepoCoder baseline by up to 17.35%, in terms of pass@k score.
- Score: 8.58692613099365
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, repository-level code generation presents unique challenges, particularly due to the need to utilize information spread across multiple files within a repository. Existing retrieval-based approaches sometimes fall short as they are limited in obtaining a broader and deeper repository context. In this paper, we present CatCoder, a novel code generation framework designed for statically typed programming languages. CatCoder enhances repository-level code generation by integrating relevant code and type context. Specifically, it leverages static analyzers to extract type dependencies and merges this information with retrieved code to create comprehensive prompts for LLMs. To evaluate the effectiveness of CatCoder, we adapt and construct benchmarks that include 199 Java tasks and 90 Rust tasks. The results show that CatCoder outperforms the RepoCoder baseline by up to 17.35%, in terms of pass@k score. Furthermore, the generalizability of CatCoder is assessed using various LLMs, including both code-specialized models and general-purpose models. Our findings indicate consistent performance improvements across all models, which underlines the practicality of CatCoder.
Related papers
- CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.
We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.
We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - GraphCoder: Enhancing Repository-Level Code Completion via Code Context Graph-based Retrieval and Language Model [30.625128161499195]
GraphCoder is a retrieval-augmented code completion framework.
It uses general code knowledge and the repository-specific knowledge via a graph-based retrieval-generation process.
It achieves higher exact match (EM) on average, with increases of +6.06 in code match and +6.23 in identifier match, while using less time and space.
arXiv Detail & Related papers (2024-06-11T06:55:32Z) - Iterative Refinement of Project-Level Code Context for Precise Code Generation with Compiler Feedback [29.136378191436396]
We present CoCoGen, a new code generation approach that uses compiler feedback to improve the LLM-generated code.
CoCoGen first leverages static analysis to identify mismatches between the generated code and the project's context.
It then iteratively aligns and fixes the identified errors using information extracted from the code repository.
arXiv Detail & Related papers (2024-03-25T14:07:27Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
This paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT.
We show that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
arXiv Detail & Related papers (2023-10-16T05:09:58Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoder is a framework to streamline the repository-level code completion process.
It incorporates a similarity-based retriever and a pre-trained code language model.
It consistently outperforms the vanilla retrieval-augmented code completion approach.
arXiv Detail & Related papers (2023-03-22T13:54:46Z) - Generation-Augmented Query Expansion For Code Retrieval [51.20943646688115]
We propose a generation-augmented query expansion framework.
Inspired by the human retrieval process - sketching an answer before searching.
We achieve new state-of-the-art results on the CodeSearchNet benchmark.
arXiv Detail & Related papers (2022-12-20T23:49:37Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.