Analyzing LLM Behavior in Dialogue Summarization: Unveiling Circumstantial Hallucination Trends
- URL: http://arxiv.org/abs/2406.03487v1
- Date: Wed, 5 Jun 2024 17:49:47 GMT
- Title: Analyzing LLM Behavior in Dialogue Summarization: Unveiling Circumstantial Hallucination Trends
- Authors: Sanjana Ramprasad, Elisa Ferracane, Zachary C. Lipton,
- Abstract summary: We evaluate the faithfulness of large language models for dialogue summarization.
Our evaluation reveals subtleties as to what constitutes a hallucination.
We introduce two prompt-based approaches for fine-grained error detection that outperform existing metrics.
- Score: 38.86240794422485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have considerably advanced the capabilities of summarization systems. However, they continue to face concerns about hallucinations. While prior work has evaluated LLMs extensively in news domains, most evaluation of dialogue summarization has focused on BART-based models, leaving a gap in our understanding of their faithfulness. Our work benchmarks the faithfulness of LLMs for dialogue summarization, using human annotations and focusing on identifying and categorizing span-level inconsistencies. Specifically, we focus on two prominent LLMs: GPT-4 and Alpaca-13B. Our evaluation reveals subtleties as to what constitutes a hallucination: LLMs often generate plausible inferences, supported by circumstantial evidence in the conversation, that lack direct evidence, a pattern that is less prevalent in older models. We propose a refined taxonomy of errors, coining the category of "Circumstantial Inference" to bucket these LLM behaviors and release the dataset. Using our taxonomy, we compare the behavioral differences between LLMs and older fine-tuned models. Additionally, we systematically assess the efficacy of automatic error detection methods on LLM summaries and find that they struggle to detect these nuanced errors. To address this, we introduce two prompt-based approaches for fine-grained error detection that outperform existing metrics, particularly for identifying "Circumstantial Inference."
Related papers
- HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
This paper proposes an explanation enhanced hallucination-detection model, coined as HuDEx.
The proposed model provides a novel approach to integrate detection with explanations, and enable both users and the LLM itself to understand and reduce errors.
arXiv Detail & Related papers (2025-02-12T04:17:02Z) - Forget What You Know about LLMs Evaluations - LLMs are Like a Chameleon [11.753349115726952]
Large language models (LLMs) often appear to excel on public benchmarks, but these high scores may mask an overreliance on dataset-specific surface cues.
We introduce the Chameleon Benchmark Overfit Detector (C-BOD), a meta-evaluation framework that distorts benchmark prompts.
By rephrasing inputs while preserving semantic content and labels, C-BOD exposes whether a model's performance is driven by memorized patterns.
arXiv Detail & Related papers (2025-02-11T10:43:36Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
Current evaluations of large language models (LLMs) often overlook non-determinism.
greedy decoding generally outperforms sampling methods for most evaluated tasks.
Smaller LLMs can match or surpass larger models such as GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-15T06:12:17Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraph is a model-based white-box detection and forecasting approach for large language models.
We show that hallucination can be effectively detected by analyzing the LLM's internal state transition dynamics.
Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.
arXiv Detail & Related papers (2024-04-06T20:02:20Z) - TofuEval: Evaluating Hallucinations of LLMs on Topic-Focused Dialogue Summarization [29.49641083851667]
We propose a new evaluation benchmark on topic-focused dialogue summarization, generated by LLMs of varying sizes.
We provide binary sentence-level human annotations of the factual consistency of these summaries along with detailed explanations of factually inconsistent sentences.
arXiv Detail & Related papers (2024-02-20T18:58:49Z) - Improving Factual Consistency of News Summarization by Contrastive Preference Optimization [65.11227166319546]
Large language models (LLMs) generate summaries that are factually inconsistent with original articles.
These hallucinations are challenging to detect through traditional methods.
We propose Contrastive Preference Optimization (CPO) to disentangle the LLMs' propensities to generate faithful and fake content.
arXiv Detail & Related papers (2023-10-30T08:40:16Z) - Chainpoll: A high efficacy method for LLM hallucination detection [0.0]
We introduce ChainPoll, an innovative hallucination detection method that excels compared to its counterparts.
We also unveil RealHall, a refined collection of benchmark datasets to assess hallucination detection metrics from recent studies.
arXiv Detail & Related papers (2023-10-22T14:45:14Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.