DSNet: A Novel Way to Use Atrous Convolutions in Semantic Segmentation
- URL: http://arxiv.org/abs/2406.03702v1
- Date: Thu, 6 Jun 2024 02:51:57 GMT
- Title: DSNet: A Novel Way to Use Atrous Convolutions in Semantic Segmentation
- Authors: Zilu Guo, Liuyang Bian, Xuan Huang, Hu Wei, Jingyu Li, Huasheng Ni,
- Abstract summary: We revisit the design of atrous convolutions in modern convolutional neural networks (CNNs)
We propose DSNet, a Dual-Branch CNN architecture, which incorporates atrous convolutions in the shallow layers of the model architecture.
Our models achieve a new state-of-the-art trade-off between accuracy and speed on ADE20K, Cityscapes and BDD datasets.
- Score: 8.240211805240023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atrous convolutions are employed as a method to increase the receptive field in semantic segmentation tasks. However, in previous works of semantic segmentation, it was rarely employed in the shallow layers of the model. We revisit the design of atrous convolutions in modern convolutional neural networks (CNNs), and demonstrate that the concept of using large kernels to apply atrous convolutions could be a more powerful paradigm. We propose three guidelines to apply atrous convolutions more efficiently. Following these guidelines, we propose DSNet, a Dual-Branch CNN architecture, which incorporates atrous convolutions in the shallow layers of the model architecture, as well as pretraining the nearly entire encoder on ImageNet to achieve better performance. To demonstrate the effectiveness of our approach, our models achieve a new state-of-the-art trade-off between accuracy and speed on ADE20K, Cityscapes and BDD datasets. Specifically, DSNet achieves 40.0% mIOU with inference speed of 179.2 FPS on ADE20K, and 80.4% mIOU with speed of 81.9 FPS on Cityscapes. Source code and models are available at Github: https://github.com/takaniwa/DSNet.
Related papers
- InceptionNeXt: When Inception Meets ConvNeXt [167.61042926444105]
We build a series of networks, namely IncepitonNeXt, which not only enjoy high throughputs but also maintain competitive performance.
InceptionNeXt achieves 1.6x higher training throughputs than ConvNeX-T, as well as attains 0.2% top-1 accuracy improvement on ImageNet-1K.
arXiv Detail & Related papers (2023-03-29T17:59:58Z) - ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders [104.05133094625137]
We propose a fully convolutional masked autoencoder framework and a new Global Response Normalization layer.
This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets.
arXiv Detail & Related papers (2023-01-02T18:59:31Z) - Receptive Field Refinement for Convolutional Neural Networks Reliably
Improves Predictive Performance [1.52292571922932]
We present a new approach to receptive field analysis that can yield these types of theoretical and empirical performance gains.
Our approach is able to improve ImageNet1K performance across a wide range of well-known, state-of-the-art (SOTA) model classes.
arXiv Detail & Related papers (2022-11-26T05:27:44Z) - MogaNet: Multi-order Gated Aggregation Network [64.16774341908365]
We propose a new family of modern ConvNets, dubbed MogaNet, for discriminative visual representation learning.
MogaNet encapsulates conceptually simple yet effective convolutions and gated aggregation into a compact module.
MogaNet exhibits great scalability, impressive efficiency of parameters, and competitive performance compared to state-of-the-art ViTs and ConvNets on ImageNet.
arXiv Detail & Related papers (2022-11-07T04:31:17Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - Elastic-Link for Binarized Neural Network [9.83865304744923]
"Elastic-Link" (EL) module enrich information flow within a BNN by adaptively adding real-valued input features to the subsequent convolutional output features.
EL produces a significant improvement on the challenging large-scale ImageNet dataset.
With the integration of ReActNet, it yields a new state-of-the-art result of 71.9% top-1 accuracy.
arXiv Detail & Related papers (2021-12-19T13:49:29Z) - Greedy Network Enlarging [53.319011626986004]
We propose a greedy network enlarging method based on the reallocation of computations.
With step-by-step modifying the computations on different stages, the enlarged network will be equipped with optimal allocation and utilization of MACs.
With application of our method on GhostNet, we achieve state-of-the-art 80.9% and 84.3% ImageNet top-1 accuracies.
arXiv Detail & Related papers (2021-07-31T08:36:30Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - DyNet: Dynamic Convolution for Accelerating Convolutional Neural
Networks [16.169176006544436]
We propose a novel dynamic convolution method to adaptively generate convolution kernels based on image contents.
Based on the architecture MobileNetV3-Small/Large, DyNet achieves 70.3/77.1% Top-1 accuracy on ImageNet with an improvement of 2.9/1.9%.
arXiv Detail & Related papers (2020-04-22T16:58:05Z) - TResNet: High Performance GPU-Dedicated Architecture [6.654949459658242]
Many deep learning models, developed in recent years, reach higher ImageNet accuracy than ResNet50, with fewer or comparable FLOPS count.
In this work, we introduce a series of architecture modifications that aim to boost neural networks' accuracy, while retaining their GPU training and inference efficiency.
We introduce a new family of GPU-dedicated models, called TResNet, which achieve better accuracy and efficiency than previous ConvNets.
arXiv Detail & Related papers (2020-03-30T17:04:47Z) - Rethinking Depthwise Separable Convolutions: How Intra-Kernel
Correlations Lead to Improved MobileNets [6.09170287691728]
We introduce blueprint separable convolutions (BSConv) as highly efficient building blocks for CNNs.
They are motivated by quantitative analyses of kernel properties from trained models.
Our approach provides a thorough theoretical derivation, interpretation, and justification for the application of depthwise separable convolutions.
arXiv Detail & Related papers (2020-03-30T15:23:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.