HackAtari: Atari Learning Environments for Robust and Continual Reinforcement Learning
- URL: http://arxiv.org/abs/2406.03997v1
- Date: Thu, 6 Jun 2024 12:17:05 GMT
- Title: HackAtari: Atari Learning Environments for Robust and Continual Reinforcement Learning
- Authors: Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Kristian Kersting,
- Abstract summary: Reinforcement learning (RL) leverages novelty as a means of exploration, yet agents often struggle to handle novel situations.
We propose HackAtari, a framework introducing controlled novelty to the most common RL benchmark, the Atari Learning Environment.
- Score: 20.034972354302788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial agents' adaptability to novelty and alignment with intended behavior is crucial for their effective deployment. Reinforcement learning (RL) leverages novelty as a means of exploration, yet agents often struggle to handle novel situations, hindering generalization. To address these issues, we propose HackAtari, a framework introducing controlled novelty to the most common RL benchmark, the Atari Learning Environment. HackAtari allows us to create novel game scenarios (including simplification for curriculum learning), to swap the game elements' colors, as well as to introduce different reward signals for the agent. We demonstrate that current agents trained on the original environments include robustness failures, and evaluate HackAtari's efficacy in enhancing RL agents' robustness and aligning behavior through experiments using C51 and PPO. Overall, HackAtari can be used to improve the robustness of current and future RL algorithms, allowing Neuro-Symbolic RL, curriculum RL, causal RL, as well as LLM-driven RL. Our work underscores the significance of developing interpretable in RL agents.
Related papers
- ReLIC: A Recipe for 64k Steps of In-Context Reinforcement Learning for Embodied AI [44.77897322913095]
We present ReLIC, a new approach for in-context reinforcement learning for embodied agents.
With ReLIC, agents are capable of adapting to new environments using 64,000 steps of in-context experience.
We find that ReLIC is capable of few-shot imitation learning despite never being trained with expert demonstrations.
arXiv Detail & Related papers (2024-10-03T17:58:11Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Beyond Tabula Rasa: Reincarnating Reinforcement Learning [37.201451908129386]
Learning tabula rasa, that is without any prior knowledge, is the prevalent workflow in reinforcement learning (RL) research.
We present reincarnating RL as an alternative workflow, where prior computational work is reused or transferred between design iterations of an RL agent.
We find that existing approaches fail in this setting and propose a simple algorithm to address their limitations.
arXiv Detail & Related papers (2022-06-03T15:11:10Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Robust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training [43.97565851415018]
Robust Reinforcement Learning (RL) focuses on improving performances under model errors or adversarial attacks.
Most of the existing literature models RARL as a zero-sum simultaneous game with Nash equilibrium as the solution concept.
We introduce a novel hierarchical formulation of robust RL - a general-sum Stackelberg game model called RRL-Stack.
arXiv Detail & Related papers (2022-02-19T03:44:05Z) - Explaining Deep Reinforcement Learning Agents In The Atari Domain
through a Surrogate Model [78.69367679848632]
We describe a lightweight and effective method to derive explanations for deep RL agents.
Our method relies on a transformation of the pixel-based input of the RL agent to an interpretable, percept-like input representation.
We then train a surrogate model, which is itself interpretable, to replicate the behavior of the target, deep RL agent.
arXiv Detail & Related papers (2021-10-07T05:01:44Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - Continuous Coordination As a Realistic Scenario for Lifelong Learning [6.044372319762058]
We introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings.
We evaluate several recent MARL methods, and benchmark state-of-the-art LLL algorithms in limited memory and computation.
We empirically show that the agents trained in our setup are able to coordinate well with unseen agents, without any additional assumptions made by previous works.
arXiv Detail & Related papers (2021-03-04T18:44:03Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent's inputs.
We propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against adversarial attacks.
arXiv Detail & Related papers (2020-08-05T07:49:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.