Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
- URL: http://arxiv.org/abs/2406.04070v1
- Date: Thu, 6 Jun 2024 13:34:43 GMT
- Title: Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
- Authors: Yinting Wu, Pai Peng, Bo Cai, Le Li, .,
- Abstract summary: Adrial training methods generate independent initial perturbation for adversarial samples from a simple uniform distribution.
We propose a simple yet effective training framework called Batch-in-Batch to enhance models.
We show that models trained within the BB framework consistently have higher adversarial accuracy across various adversarial settings.
- Score: 9.241737058291823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training methods commonly generate independent initial perturbation for adversarial samples from a simple uniform distribution, and obtain the training batch for the classifier without selection. In this work, we propose a simple yet effective training framework called Batch-in-Batch (BB) to enhance models robustness. It involves specifically a joint construction of initial values that could simultaneously generates $m$ sets of perturbations from the original batch set to provide more diversity for adversarial samples; and also includes various sample selection strategies that enable the trained models to have smoother losses and avoid overconfident outputs. Through extensive experiments on three benchmark datasets (CIFAR-10, SVHN, CIFAR-100) with two networks (PreActResNet18 and WideResNet28-10) that are used in both the single-step (Noise-Fast Gradient Sign Method, N-FGSM) and multi-step (Projected Gradient Descent, PGD-10) adversarial training, we show that models trained within the BB framework consistently have higher adversarial accuracy across various adversarial settings, notably achieving over a 13% improvement on the SVHN dataset with an attack radius of 8/255 compared to the N-FGSM baseline model. Furthermore, experimental analysis of the efficiency of both the proposed initial perturbation method and sample selection strategies validates our insights. Finally, we show that our framework is cost-effective in terms of computational resources, even with a relatively large value of $m$.
Related papers
- Debiased Sample Selection for Combating Noisy Labels [24.296451733127956]
We propose a noIse-Tolerant Expert Model (ITEM) for debiased learning in sample selection.
Specifically, to mitigate the training bias, we design a robust network architecture that integrates with multiple experts.
By training on the mixture of two class-discriminative mini-batches, the model mitigates the effect of the imbalanced training set.
arXiv Detail & Related papers (2024-01-24T10:37:28Z) - Fast Propagation is Better: Accelerating Single-Step Adversarial
Training via Sampling Subnetworks [69.54774045493227]
A drawback of adversarial training is the computational overhead introduced by the generation of adversarial examples.
We propose to exploit the interior building blocks of the model to improve efficiency.
Compared with previous methods, our method not only reduces the training cost but also achieves better model robustness.
arXiv Detail & Related papers (2023-10-24T01:36:20Z) - DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers [21.741026088202126]
We propose a novel way to certify the robustness of pretrained models using only a few training samples.
Our proposed approach generates class-boundary and interpolated samples corresponding to each training sample.
We obtain significant improvements over the baseline on multiple benchmark datasets and also report similar performance under the challenging black box setup.
arXiv Detail & Related papers (2022-10-17T10:41:18Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Sparsity Winning Twice: Better Robust Generalization from More Efficient
Training [94.92954973680914]
We introduce two alternatives for sparse adversarial training: (i) static sparsity and (ii) dynamic sparsity.
We find both methods to yield win-win: substantially shrinking the robust generalization gap and alleviating the robust overfitting.
Our approaches can be combined with existing regularizers, establishing new state-of-the-art results in adversarial training.
arXiv Detail & Related papers (2022-02-20T15:52:08Z) - Robust Binary Models by Pruning Randomly-initialized Networks [57.03100916030444]
We propose ways to obtain robust models against adversarial attacks from randomly-d binary networks.
We learn the structure of the robust model by pruning a randomly-d binary network.
Our method confirms the strong lottery ticket hypothesis in the presence of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T00:05:08Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
We propose a noise-robust approach named Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency)
Specifically, we train the network in a contrastive learning manner. Predictions from two different views of each sample are used to estimate its "likelihood" of being clean or out-of-distribution.
arXiv Detail & Related papers (2021-03-24T07:26:07Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
We study different ways of creating ensembles from pre-trained models.
We show that the nature of pre-training itself is a performant source of diversity.
We propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset.
arXiv Detail & Related papers (2020-10-14T07:59:00Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.