Confabulation: The Surprising Value of Large Language Model Hallucinations
- URL: http://arxiv.org/abs/2406.04175v2
- Date: Tue, 25 Jun 2024 18:37:19 GMT
- Title: Confabulation: The Surprising Value of Large Language Model Hallucinations
- Authors: Peiqi Sui, Eamon Duede, Sophie Wu, Richard Jean So,
- Abstract summary: We argue that measurable semantic characteristics of LLM confabulations mirror a human propensity to utilize increased narrativity as a cognitive resource for sense-making and communication.
This finding reveals a tension in our usually dismissive understandings of confabulation.
- Score: 0.7249731529275342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a systematic defense of large language model (LLM) hallucinations or 'confabulations' as a potential resource instead of a categorically negative pitfall. The standard view is that confabulations are inherently problematic and AI research should eliminate this flaw. In this paper, we argue and empirically demonstrate that measurable semantic characteristics of LLM confabulations mirror a human propensity to utilize increased narrativity as a cognitive resource for sense-making and communication. In other words, it has potential value. Specifically, we analyze popular hallucination benchmarks and reveal that hallucinated outputs display increased levels of narrativity and semantic coherence relative to veridical outputs. This finding reveals a tension in our usually dismissive understandings of confabulation. It suggests, counter-intuitively, that the tendency for LLMs to confabulate may be intimately associated with a positive capacity for coherent narrative-text generation.
Related papers
- Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
Large language models are successful in answering factoid questions but are also prone to hallucination.
We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics.
Our study shed light on understanding the reasons for LLMs' hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
arXiv Detail & Related papers (2024-03-29T06:48:30Z) - In-Context Sharpness as Alerts: An Inner Representation Perspective for
Hallucination Mitigation [36.31646727970656]
Large language models (LLMs) frequently hallucinate and produce factual errors.
correct generations tend to have sharper context activations in the hidden states of the in-context tokens, compared to the incorrect ones.
We propose an entropy-based metric to quantify the sharpness'' among the in-context hidden states and incorporate it into the decoding process.
arXiv Detail & Related papers (2024-03-03T15:53:41Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - Hallucinations in Neural Automatic Speech Recognition: Identifying
Errors and Hallucinatory Models [11.492702369437785]
Hallucinations are semantically unrelated to the source utterance, yet still fluent and coherent.
We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models.
We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency.
arXiv Detail & Related papers (2024-01-03T06:56:56Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Exploring the Relationship between LLM Hallucinations and Prompt
Linguistic Nuances: Readability, Formality, and Concreteness [6.009751153269125]
We examine how linguistic factors in prompts, specifically readability, formality, and concreteness, influence the occurrence of hallucinations.
Our experimental results suggest that prompts characterized by greater formality and concreteness tend to result in reduced hallucination.
arXiv Detail & Related papers (2023-09-20T05:04:16Z) - Quantifying and Attributing the Hallucination of Large Language Models
via Association Analysis [29.043008337391075]
Large language models (LLMs) suffer from the hallucination problem, which threatens their reliability.
Previous works first categorize the hallucination according to the phenomenon similarity, then quantify the proportion that model outputs contain hallucinatory contents.
We combine the hallucination level and hallucination reason investigation through an association analysis, which builds the relationship between the hallucination rate of LLMs with a set of risk factors.
arXiv Detail & Related papers (2023-09-11T03:35:00Z) - Contrastive Learning Reduces Hallucination in Conversations [76.55116206021346]
We propose a contrastive learning scheme, named MixCL.
A novel mixed contrastive objective is proposed to explicitly optimize the implicit knowledge elicitation process of LMs.
We show that MixCL achieves comparable performance to state-of-the-art KB-based approaches.
arXiv Detail & Related papers (2022-12-20T16:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.