A Voxel-based Approach for Simulating Microbial Decomposition in Soil: Comparison with LBM and Improvement of Morphological Models
- URL: http://arxiv.org/abs/2406.04177v1
- Date: Thu, 6 Jun 2024 15:35:25 GMT
- Title: A Voxel-based Approach for Simulating Microbial Decomposition in Soil: Comparison with LBM and Improvement of Morphological Models
- Authors: Mouad Klai, Olivier Monga, Mohamed Soufiane Jouini, Valérie Pot,
- Abstract summary: This study presents a new computational approach for simulating the microbial decomposition of organic matter.
The method employs a valuated graph of connected voxels to simulate transformation and diffusion processes.
The resulting model can be adapted to simulate any diffusion-transformation processes in porous media.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a new computational approach for simulating the microbial decomposition of organic matter, from 3D micro-computed tomography (micro-CT) images of soil. The method employs a valuated graph of connected voxels to simulate transformation and diffusion processes involved in microbial decomposition within the complex soil matrix. The resulting model can be adapted to simulate any diffusion-transformation processes in porous media. We implemented parallelization strategies and explored different numerical methods, including implicit, explicit, synchronous, and asynchronous schemes. To validate our method, we compared simulation outputs with those provided by LBioS and by Mosaic models. LBioS uses a lattice-Boltzmann method for diffusion and Mosaic takes benefit of Pore Network Geometrical Modelling (PNGM) by means of geometrical primitives such as spheres and ellipsoids. This approach achieved comparable results to traditional LBM-based simulations, but required only one-fourth of the computing time. Compared to Mosaic simulation, the proposed method is slower but more accurate and does not require any calibration. Furthermore, we present a theoretical framework and an application example to enhance PNGM-based simulations. This is accomplished by approximating the diffusional conductance coefficients using stochastic gradient descent and data generated by the current approach.
Related papers
- A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Data-driven reduced-order modelling for blood flow simulations with
geometry-informed snapshots [0.0]
A data-driven surrogate model is proposed for the efficient prediction of blood flow simulations on similar but distinct domains.
A non-intrusive reduced-order model for geometrical parameters is constructed using proper decomposition.
A radial basis function interpolator is trained for predicting the reduced coefficients of the reduced-order model.
arXiv Detail & Related papers (2023-02-21T21:18:17Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
We introduce two synthetic likelihood methods for Simulation-Based Inference.
We learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator.
We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a model of the neuroscience network in the crab.
arXiv Detail & Related papers (2022-10-26T14:38:24Z) - GANs and Closures: Micro-Macro Consistency in Multiscale Modeling [0.0]
We present an approach that couples physics-based simulations and biasing methods for sampling conditional distributions with Machine Learning-based conditional generative adversarial networks.
We show that this framework can improve multiscale SDE dynamical systems sampling, and even shows promise for systems of increasing complexity.
arXiv Detail & Related papers (2022-08-23T03:45:39Z) - Generic tool for numerical simulation of transformation-diffusion
processes in complex volume geometric shapes: application to microbial
decomposition of organic matter [0.0]
This paper presents a generic framework for the numerical simulation of transformation-diffusion processes in complex volume geometric shapes.
We generalized and improved the MOSAIC method significantly and thus yielding a much more generic and efficient numerical simulation scheme.
arXiv Detail & Related papers (2021-10-07T01:01:48Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.