Encoding Semantic Priors into the Weights of Implicit Neural Representation
- URL: http://arxiv.org/abs/2406.04178v1
- Date: Thu, 6 Jun 2024 15:35:41 GMT
- Title: Encoding Semantic Priors into the Weights of Implicit Neural Representation
- Authors: Zhicheng Cai, Qiu Shen,
- Abstract summary: Implicit neural representation (INR) has recently emerged as a promising paradigm for signal representations.
This paper proposes a re parameterization method termed as SPW, which encodes the semantic priors to the weights of INR.
Experimental results show that SPW can improve the performance of various INR models significantly on various tasks.
- Score: 6.057991864861226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural representation (INR) has recently emerged as a promising paradigm for signal representations, which takes coordinates as inputs and generates corresponding signal values. Since these coordinates contain no semantic features, INR fails to take any semantic information into consideration. However, semantic information has been proven critical in many vision tasks, especially for visual signal representation. This paper proposes a reparameterization method termed as SPW, which encodes the semantic priors to the weights of INR, thus making INR contain semantic information implicitly and enhancing its representational capacity. Specifically, SPW uses the Semantic Neural Network (SNN) to extract both low- and high-level semantic information of the target visual signal and generates the semantic vector, which is input into the Weight Generation Network (WGN) to generate the weights of INR model. Finally, INR uses the generated weights with semantic priors to map the coordinates to the signal values. After training, we only retain the generated weights while abandoning both SNN and WGN, thus SPW introduces no extra costs in inference. Experimental results show that SPW can improve the performance of various INR models significantly on various tasks, including image fitting, CT reconstruction, MRI reconstruction, and novel view synthesis. Further experiments illustrate that model with SPW has lower weight redundancy and learns more novel representations, validating the effectiveness of SPW.
Related papers
- Towards Croppable Implicit Neural Representations [9.372436024276828]
Implicit Neural Representations (INRs) have peaked interest in recent years due to their ability to encode natural signals using neural networks.
In this paper we explore the idea of editable INRs, and specifically focus on the widely used cropping operation.
We present Local-Global SIRENs -- a novel INR architecture that supports cropping by design.
arXiv Detail & Related papers (2024-09-28T22:41:49Z) - Single-Layer Learnable Activation for Implicit Neural Representation (SL$^{2}$A-INR) [6.572456394600755]
Implicit Representation (INR) leveraging a neural network to transform coordinate input into corresponding attributes has driven significant advances in vision-related domains.
We propose SL$2$A-INR with a single-layer learnable activation function, prompting the effectiveness of traditional ReLU-baseds.
Our method performs superior across diverse tasks, including image representation, 3D shape reconstruction, single image super-resolution, CT reconstruction, and novel view.
arXiv Detail & Related papers (2024-09-17T02:02:15Z) - Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs)
We propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE)
arXiv Detail & Related papers (2024-07-29T12:24:28Z) - INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings [4.639495398851869]
Implicit Neural Representations (INRs) have revolutionized signal representation by leveraging neural networks to provide continuous and smooth representations of complex data.
We introduce INCODE, a novel approach that enhances the control of the sinusoidal-based activation function in INRs using deep prior knowledge.
Our approach not only excels in representation, but also extends its prowess to tackle complex tasks such as audio, image, and 3D shape reconstructions.
arXiv Detail & Related papers (2023-10-28T23:16:49Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
Generalizable implicit neural representation (INR) enables a single continuous function to represent multiple data instances.
We propose a novel framework for generalizable INR that combines a transformer encoder with a locality-aware INR decoder.
Our framework significantly outperforms previous generalizable INRs and validates the usefulness of the locality-aware latents for downstream tasks.
arXiv Detail & Related papers (2023-10-09T11:26:58Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
We present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID)
Our NID assembles a group of coordinate-based Impworks which are tuned to span the desired function space.
Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data.
arXiv Detail & Related papers (2022-07-08T05:07:19Z) - Towards Lightweight Controllable Audio Synthesis with Conditional
Implicit Neural Representations [10.484851004093919]
Implicit neural representations (INRs) are neural networks used to approximate low-dimensional functions.
In this work we shed light on the potential of Conditional Implicit Neural Representations (CINRs) as lightweight backbones in generative frameworks for audio synthesis.
arXiv Detail & Related papers (2021-11-14T13:36:18Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.