Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games
- URL: http://arxiv.org/abs/2406.04201v2
- Date: Thu, 03 Oct 2024 01:34:02 GMT
- Title: Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games
- Authors: Jiawei Ge, Yuanhao Wang, Wenzhe Li, Chi Jin,
- Abstract summary: equilibria in multiplayer games are neither unique nor non-exploitable.
This paper takes an initial step towards addressing these challenges by focusing on the natural objective of equal share.
We design a series of efficient algorithms, inspired by no-regret learning, that provably attain approximate equal share across various settings.
- Score: 21.168085154982712
- License:
- Abstract: This paper examines multiplayer symmetric constant-sum games with more than two players in a competitive setting, including examples like Mahjong, Poker, and various board and video games. In contrast to two-player zero-sum games, equilibria in multiplayer games are neither unique nor non-exploitable, failing to provide meaningful guarantees when competing against opponents who play different equilibria or non-equilibrium strategies. This gives rise to a series of long-lasting fundamental questions in multiplayer games regarding suitable objectives, solution concepts, and principled algorithms. This paper takes an initial step towards addressing these challenges by focusing on the natural objective of equal share -- securing an expected payoff of C/n in an n-player symmetric game with a total payoff of C. We rigorously identify the theoretical conditions under which achieving an equal share is tractable and design a series of efficient algorithms, inspired by no-regret learning, that provably attain approximate equal share across various settings. Furthermore, we provide complementary lower bounds that justify the sharpness of our theoretical results. Our experimental results highlight worst-case scenarios where meta-algorithms from prior state-of-the-art systems for multiplayer games fail to secure an equal share, while our algorithm succeeds, demonstrating the effectiveness of our approach.
Related papers
- Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
We develop a new framework to characterize optimistic policy gradient methods in multi-player games with a single controller.
Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
arXiv Detail & Related papers (2023-12-19T11:34:10Z) - Guarantees for Self-Play in Multiplayer Games via Polymatrix
Decomposability [2.2636685010313364]
Self-play is a technique for machine learning in multi-agent systems where a learning algorithm learns by interacting with copies of itself.
We show that in two-player constant-sum games, self-play that reaches Nash equilibrium is guaranteed to produce strategies that perform well against any post-training opponent.
For the first time, our results identify a structural property of multiplayer games that enable performance guarantees for the strategies produced by a broad class of self-play algorithms.
arXiv Detail & Related papers (2023-10-17T18:33:21Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
We develop the concepts of Mean-Field correlated and coarse-correlated equilibria.
We show that they can be efficiently learnt in emphall games, without requiring any additional assumption on the structure of the game.
arXiv Detail & Related papers (2022-08-22T08:31:46Z) - Efficiently Computing Nash Equilibria in Adversarial Team Markov Games [19.717850955051837]
We introduce a class of games in which a team identically players is competing against an adversarial player.
This setting allows for a unifying treatment of zero-sum Markov games potential games.
Our main contribution is the first algorithm for computing stationary $epsilon$-approximate Nash equilibria in adversarial team Markov games.
arXiv Detail & Related papers (2022-08-03T16:41:01Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
Learning from repeated play in a fixed zero-sum game is a classic problem in game theory and online learning.
We develop a single parameter-free algorithm that simultaneously enjoys favorable guarantees under three performance measures.
Our algorithm is based on a two-layer structure with a meta-algorithm learning over a group of black-box base-learners satisfying a certain property.
arXiv Detail & Related papers (2022-01-30T06:10:04Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Efficient Competitive Self-Play Policy Optimization [20.023522000925094]
We propose a new algorithmic framework for competitive self-play reinforcement learning in two-player zero-sum games.
Our method trains several agents simultaneously, and intelligently takes each other as opponent based on simple adversarial rules.
We prove theoretically that our algorithm converges to an approximate equilibrium with high probability in convex-concave games.
arXiv Detail & Related papers (2020-09-13T21:01:38Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Learning Zero-Sum Simultaneous-Move Markov Games Using Function
Approximation and Correlated Equilibrium [116.56359444619441]
We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games.
In the offline setting, we control both players and aim to find the Nash Equilibrium by minimizing the duality gap.
In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret.
arXiv Detail & Related papers (2020-02-17T17:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.