Benchmark Data Contamination of Large Language Models: A Survey
- URL: http://arxiv.org/abs/2406.04244v1
- Date: Thu, 6 Jun 2024 16:41:39 GMT
- Title: Benchmark Data Contamination of Large Language Models: A Survey
- Authors: Cheng Xu, Shuhao Guan, Derek Greene, M-Tahar Kechadi,
- Abstract summary: This paper reviews the complex challenge of Benchmark Data Contamination (BDC) in Large Language Models (LLMs) evaluation.
It explores alternative assessment methods to mitigate the risks associated with traditional benchmarks.
- Score: 5.806534973464769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Large Language Models (LLMs) like GPT-4, Claude-3, and Gemini has transformed the field of natural language processing. However, it has also resulted in a significant issue known as Benchmark Data Contamination (BDC). This occurs when language models inadvertently incorporate evaluation benchmark information from their training data, leading to inaccurate or unreliable performance during the evaluation phase of the process. This paper reviews the complex challenge of BDC in LLM evaluation and explores alternative assessment methods to mitigate the risks associated with traditional benchmarks. The paper also examines challenges and future directions in mitigating BDC risks, highlighting the complexity of the issue and the need for innovative solutions to ensure the reliability of LLM evaluation in real-world applications.
Related papers
- Reliable and Efficient Amortized Model-based Evaluation [57.6469531082784]
The average score across a wide range of benchmarks provides a signal that helps guide the use of language models in practice.
A popular attempt to lower the cost is to compute the average score on a subset of the benchmark.
This approach often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset.
We train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost.
arXiv Detail & Related papers (2025-03-17T16:15:02Z) - Dynamic Benchmarking of Reasoning Capabilities in Code Large Language Models Under Data Contamination [18.006532081289627]
We propose tool, a novel benchmarking suite for evaluating Code LLMs under potential data contamination.
tool employs multiple agents to extract and modify the context without altering the core logic, generating semantically equivalent variations.
Results show that tool effectively benchmarks reasoning capabilities under contamination risks while generating diverse problem sets to ensure consistent and reliable evaluations.
arXiv Detail & Related papers (2025-03-06T06:56:59Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.
Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.
We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
We propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset.
We design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6.
Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline.
arXiv Detail & Related papers (2024-11-23T08:06:06Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models [53.84677081899392]
KIEval is a Knowledge-grounded Interactive Evaluation framework for large language models.
It incorporates an LLM-powered "interactor" role for the first time to accomplish a dynamic contamination-resilient evaluation.
Extensive experiments on seven leading LLMs across five datasets validate KIEval's effectiveness and generalization.
arXiv Detail & Related papers (2024-02-23T01:30:39Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
We propose a unified robustness evaluation framework based on the slot-filling task to evaluate the dialogue understanding capability of large language models.
Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data.
Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios.
arXiv Detail & Related papers (2023-10-10T10:22:05Z) - Benchmarking Large Language Models in Retrieval-Augmented Generation [53.504471079548]
We systematically investigate the impact of Retrieval-Augmented Generation on large language models.
We analyze the performance of different large language models in 4 fundamental abilities required for RAG.
We establish Retrieval-Augmented Generation Benchmark (RGB), a new corpus for RAG evaluation in both English and Chinese.
arXiv Detail & Related papers (2023-09-04T08:28:44Z) - Information Association for Language Model Updating by Mitigating
LM-Logical Discrepancy [68.31760483418901]
Large Language Models(LLMs) struggle with providing current information due to the outdated pre-training data.
Existing methods for updating LLMs, such as knowledge editing and continual fine-tuning, have significant drawbacks in generalizability of new information.
We identify the core challenge behind these drawbacks: the LM-logical discrepancy featuring the difference between language modeling probabilities and logical probabilities.
arXiv Detail & Related papers (2023-05-29T19:48:37Z) - Evaluation of Synthetic Datasets for Conversational Recommender Systems [0.0]
The absence of robust evaluation frameworks has been a long-standing problem.
Since the quality of training data is critical for downstream applications, it is important to develop metrics that evaluate the quality holistically.
In this paper, we present a framework that takes a multi-faceted approach towards evaluating datasets produced by generative models.
arXiv Detail & Related papers (2022-12-12T18:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.